It is established that overnutrition is a risk factor for hepatocellular carcinoma. Il has been proposed that hepatic steatosis leads to a subinflammatory response and to the production of mitogenic cytokines. Our team is focused on the role of mammalian Target of Rapamycin (mTOR) in two pathophysiological conditions that modulate liver growth: liver regeneration after partial hepatectomy, and steatosis-associated tumorigenesis. Target kinases of mTOR seem more specifically involved in these processes: while S6K1 contributes to liver regeneration following hepatectomy, Akt2 is implicated in steatosis-associated tumorigenesis. In addition, recent data indicate that the transcription factor PPARγ, through an activation of glycolytic enzymes, could promote liver steatosis, hypertrophy and hyperplasia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ando.2013.03.003 | DOI Listing |
Immunity
January 2025
Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium. Electronic address:
Our understanding of the functional heterogeneity of resident versus recruited macrophages in the diseased liver is limited. A population of recruited lipid-associated macrophages (LAMs) has been reported to populate the diseased liver alongside resident Kupffer cells (KCs). However, the precise roles of these distinct macrophage subsets remain elusive.
View Article and Find Full Text PDFSemin Pediatr Surg
January 2025
Department of Surgery, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; The Liver Center, University of California San Francisco, San Francisco, CA 94143; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, CA 94143, USA. Electronic address:
Biliary atresia is a progressive neonatal cholangiopathy that leads to liver failure. Characterized by inflammation-mediated liver injury, the immune system plays a critical role in the pathogenesis of this disease. Though several types of immune cells and mediators have been implicated in animal models of biliary atresia, emerging literature reflects the complex interplay of components of the immune response that contributes to disease progression in humans.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Obes Rev
January 2025
Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium.
Developments in basic stem cell biology have paved the way for technology translation in human medicine. An exciting prospective use of stem cells is the ex vivo generation of hepatic and pancreatic endocrine cells for biomedical applications. This includes creating novel models 'in a dish' and developing therapeutic strategies for complex diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetes.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
This in vivo study introduces a newly developed spirooxindole derivative that is deemed safe and effective as a potential targeted therapy for various cancers. Extensive in vivo investigations, including histopathology, immunohistochemistry, and molecular biology, validated its potential for further preclinical and clinical exploration, necessitating comprehensive examinations of its bioavailability, pharmacodynamics, and pharmacokinetics. Additionally, this study involves the development of a commercially viable proniosomal drug delivery system for the compound, facilitating controlled drug release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!