Background: Prevalence of bacteremia caused by non-fermentative gram-negative bacteria (NFGNB) has been increasing over the past decade. Although many studies have already investigated epidemiology of NFGNB bacteremia, most focused only on common NFGNB including Pseudomonas aeruginosa (PA) and Acinetobacter baumannii (AB). Knowledge of uncommon NFGNB bacteremia is very limited. Our study aimed to investigate epidemiology and identify factors associated with uncommon NFGNB bacteremia.

Methods: This observational study was conducted at a university hospital in Thailand during July 1, 2007-Dec 31, 2008. All patients who had at least one blood culture positive for NFGNB and met the criteria for systemic inflammatory response syndrome within 24 hours before/after obtaining the blood culture were enrolled. The NFGNB isolates that could not be satisfactorily identified by the standard biochemical assays were further characterized by molecular sequencing methods. To identify factors associated with uncommon NFGNB bacteremia, characteristics of patients in the uncommon NFGNB group were subsequently compared to patients in the common NFGNB group (AB and PA bacteremia).

Results: Our study detected 223 clinical isolates of NFGNB in 221 unique patients. The major causative pathogens were AB (32.7%), followed by PA (27.8%), Stenotrophomonas maltophilia (5.4%), Acinetobacter lwoffii (4.9%) and Burkholderia pseudomallei (2.7%). Infection-related mortality was 63.0% in the AB group, 40.3% in the PA group and 17.4% in the uncommon NFGNB group. Factors associated with uncommon NFGNB bacteremia (OR [95% CI]; p-value) were male sex (0.28 [0.14-0.53]; p < 0.001), hospital-acquired infection (0.23 [0.11-0.51]; p < 0.001), recent aminoglycosides exposure 0.23 [0.06-0.8]; p = 0.01), primary bacteremia (6.43 [2.89-14.2]; p < 0.001]), catheter related infection (4.48 [1.54-13.06]; p < 0.001) and recent vancomycin exposure (3.88 [1.35-11.1]; p = 0.02).

Conclusions: Our distribution of causative pathogens was slightly different from other studies. The common NFGNB group had a remarkably higher ID-mortality than the uncommon NFGNB group. Knowledge of factors associated with uncommon NFGNB bacteremia would help physicians to distinguish between low vs. high risk patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636083PMC
http://dx.doi.org/10.1186/1471-2334-13-167DOI Listing

Publication Analysis

Top Keywords

uncommon nfgnb
32
nfgnb bacteremia
20
nfgnb group
20
nfgnb
16
factors associated
16
associated uncommon
16
common nfgnb
12
uncommon
9
bacteremia caused
8
non-fermentative gram-negative
8

Similar Publications

Delftia acidovorans is an aerobic, non-fermenting Gram-negative bacterium (NFGNB), found in soil, water and hospital environments. It is rarely clinically significant, most commonly affecting hospitalized or immunocompromised patients. The present study aimed to explore the genomic characteristics of a Bulgarian clinical D.

View Article and Find Full Text PDF

Background: Infective endocarditis (IE) due to non-HACEK bacilli (Haemophilus species, Actinobacillus, Cardiobacterium, Eikenella, or Kingella) is uncommon and poorly described. The objectives of this study were to describe non-HACEK Gram-Negative Bacilli (GNB) IE cases and compare characteristic of IE produced by Enterobacterales and non-fermenting (NF) GNB.

Methods: From January 2008 to December 2018, 3910 consecutive patients with definitive IE diagnosis, defined with Modified Duke criteria, either clinical or pathological criteria (e.

View Article and Find Full Text PDF

Pseudomonas luteola which was previously known as Chryseomonas luteola; is a gram-negative, non-fermentative, aerobic, motile, non-spore-forming bacillus. It is frequently found as a saprophyte in soil, water and other damp environments and is an opportunistic pathogen in patients with underlying medical disorders or with indwelling catheters. It has been reported as an uncommon cause of bacteremia, sepsis, septic arthritis, meningitis, endocarditis, and peritonitis.

View Article and Find Full Text PDF

Background: Prevalence of bacteremia caused by non-fermentative gram-negative bacteria (NFGNB) has been increasing over the past decade. Although many studies have already investigated epidemiology of NFGNB bacteremia, most focused only on common NFGNB including Pseudomonas aeruginosa (PA) and Acinetobacter baumannii (AB). Knowledge of uncommon NFGNB bacteremia is very limited.

View Article and Find Full Text PDF

The Phoenix automated microbiology system (BD Diagnostics, Sparks, MD) is designed for the rapid identification (ID) and antimicrobial susceptibility testing (AST) of clinically significant human bacterial pathogens. We evaluated the performance of the Phoenix instrument in comparison with that of the MicroScan WalkAway system (Dade Behring, West Sacramento, CA) in the ID and AST of gram-negative clinical strains and challenge isolates of Enterobacteriaceae (n = 150) and nonfermentative gram-negative bacilli (NFGNB; 45 clinical isolates and 8 challenge isolates). ID discrepancies were resolved with the API 20E and API 20NE conventional biochemical ID systems (bioMerieux, Durham, NC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!