Copper-catalyzed azide-alkyne cycloaddition (CuAAC) has found numerous applications in a variety of fields. We report here only modest differences in the reactivity of various classes of terminal alkynes under typical bioconjugative and preparative organic conditions. Propargyl compounds represent an excellent combination of azide reactivity, ease of installation, and cost. Electronically activated propiolamides are slightly more reactive, at the expense of increased propensity for Michael addition. Certain alkynes, including tertiary propargyl carbamates, are not suitable for bioconjugation due to copper-induced fragmentation. A fluorogenic probe based on such reactivity is available in one step from rhodamine 110 and can be useful for optimization of CuAAC conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4170714 | PMC |
http://dx.doi.org/10.1021/bc300672b | DOI Listing |
Eur J Med Chem
January 2025
Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar. Electronic address:
Organophosphorus compounds, characterized by the incorporation of phosphorus into organic molecules, play a critical role in various fields such as medicine, agriculture, and industry. Their unique electronic properties and versatility make them essential in developing therapeutic agents, pesticides, and materials. One prominent class of organophosphorus compounds is organophosphorus heterocycles, which combine the benefits of both phosphorus and cyclic structures.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Materials Research Institute, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
Covalent organic frameworks (COFs) hold promise in heterogeneous metal catalysis benefiting from their robust, crystalline, and porous structures. However, synthetic challenges persist in prolonged crystallization times, limited metal loading, and uncertain coordination environments. Here, we present the rapid crystallization and versatile metalation of new acetylhydrazone-linked COFs (AH-COFs) by condensation of ketone and hydrazide components, featuring full conversion within 30 min under open-air and mild conditions.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Department of Applied Chemistry, Chemical Engineering, and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Yamagata, Japan.
Graft copolymers have gained significant importance in various fields due to their tunable functionality and well-defined architecture. However, there are still limitations due to the compatibility of monomers and functional groups depending on the polymerization mode. Click chemistry has solved this problem through its ability to easily and quantitatively link a wide range of polymers and functional groups.
View Article and Find Full Text PDFChemMedChem
December 2024
Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic & Medicinal Chemistry, UMR7042 CNRS-Université de Strasbourg-Université Haute-Alsace, European School of Chemistry, Polymers and Materials (ECPM), 25, rue Becquerel, F-67087, Strasbourg, France.
This study explores the synthesis and evaluation of novel 1,2,3-triazole-methyl-1,4-naphthoquinone hybrids, focusing on their electrochemical properties and antiparasitic efficacies against two human blood-dwelling parasites Plasmodium falciparum and Schistosoma mansoni. Using copper-catalyzed azide-alkyne cycloaddition (CuAAC), a well-established tool in click chemistry, two synthetic routes were assessed to develop α- and β-[triazole-methyl]-menadione derivatives. By optimizing the CuAAC reaction conditions, yields were significantly improved, reaching up to 94 % for key intermediates and resulting in the formation of a library of approximately 30 compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!