Mutations in the CLCN5 (chloride channel, voltage-sensitive 5) gene cause Dent's disease because they reduce the functional expression of the ClC-5 chloride/proton transporter in the recycling endosomes of proximal tubule epithelial cells. The majority (60%) of these disease-causing mutations in ClC-5 are misprocessed and retained in the ER (endoplasmic reticulum). Importantly, the structural basis for misprocessing and the cellular destiny of such ClC-5 mutants have yet to be defined. A ClC-5 monomer comprises a short N-terminal region, an extensive membrane domain and a large C-terminal domain. The recent crystal structure of a eukaryotic ClC (chloride channel) transporter revealed the intimate interaction between the membrane domain and the C-terminal region. Therefore we hypothesized that intramolecular interactions may be perturbed in certain mutants. In the present study we examined two misprocessed mutants: C221R located in the membrane domain and R718X, which truncates the C-terminal domain. Both mutants exhibited enhanced protease susceptibility relative to the normal protein in limited proteolysis studies, providing direct evidence that they are misfolded. Interestingly, the membrane-localized mutation C221R led to enhanced protease susceptibility of the cytosolic N-terminal region, and the C-terminal truncation mutation R718X led to enhanced protease susceptibility of both the cytosolic C-terminal and the membrane domain. Together, these studies support the idea that certain misprocessing mutations alter intramolecular interactions within the full-length ClC-5 protein. Further, we found that these misfolded mutants are polyubiquitinated and targeted for proteasomal degradation in the OK (opossum kidney) renal epithelial cells, thereby ensuring that they do not elicit the unfolded protein response.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20121848DOI Listing

Publication Analysis

Top Keywords

membrane domain
16
enhanced protease
12
protease susceptibility
12
proteasomal degradation
8
chloride channel
8
epithelial cells
8
n-terminal region
8
c-terminal domain
8
intramolecular interactions
8
led enhanced
8

Similar Publications

The outer mitochondrial membrane protein known as mitoNEET was discovered when it was labeled by a photoaffinity derivative of the anti-diabetes medication, pioglitazone. The biological role for mitoNEET and its specific mechanism for achieving this remains an active subject for research. There is accumulating evidence suggesting that mitoNEET could be a component of mitochondrial FeS cofactor biogenesis.

View Article and Find Full Text PDF

Soft materials underpin many domains of science and engineering, including soft robotics, structured fluids, and biological and particulate media. In response to applied mechanical, electromagnetic or chemical stimuli, such materials typically change shape, often dramatically. Predicting their structure is of great interest to facilitate design and mechanistic understanding, and can be cast as an optimization problem where a given energy function describing the physics of the material is minimized with respect to the shape of the domain and additional fields.

View Article and Find Full Text PDF

In the context of the oral cavity, an organic layer known as the mucosal pellicle (MP) adheres to the surface of the oral epithelium, playing a pivotal role in lubricating and safeguarding oral tissues. The formation of the MP is driven by interactions between a transmembrane mucin known as MUC1, located on the oral epithelium, and salivary secreted mucin, namely MUC5B and MUC7. This study aimed to investigate the function of MUC1 and the influence of its structure on MP lubrication properties.

View Article and Find Full Text PDF

The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.

View Article and Find Full Text PDF

Membrane engineering is a complex field involving the development of the most suitable membrane process for specific purposes and dealing with the design and operation of membrane technologies. This study analyzed 1424 articles on reverse osmosis (RO) membrane engineering from the Scopus database to provide guidance for future studies. The results show that since the first article was published in 1964, the domain has gained popularity, especially since 2009.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!