Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work discusses the preparation and characterization of novel collagen scaffolds by using unnatural D-amino acids (Coll-D-AAs)-assisted 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxyl succinimide(NHS)-initiated crosslinking. The mechanical strength, hydrothermal and structural stability, resistance to biodegradation and the biocompatibility of Coll-D-AAs matrices were investigated. The results from Thermo mechanical analysis, Differential scanning calorimetric analysis and Thermo gravimetric analysis of the Coll-D-AAs matrices indicate a significant increase in the tensile strength (TS, 180±3), % elongation (% E, 80±9), elastic modulus (E, 170±4) denaturation temperature (T d, 108±4) and a significant decrease in decomposition rate (Tg, 64±6). Scanning electron microscopic and Atomic force microscopic analyses revealed a well-ordered with properly oriented and well-aligned structure of the Coll-D-AAs matrices. FT-IR results suggest that the incorporation of D-AAs favours the molecular stability of collagen matrix. The D-AAs stabilizing the collagen matrices against degradation by collagenase would have been brought about by protecting the active sites in collagen. The Coll-D-AAs matrices have good biocompatibility when compared with native collagen matrix. Molecular docking studies also indicate better understanding of bonding pattern of collagen with D-AAs. These Coll-D-AAs matrices have been produced in high mechanical strength, thermally and biologically stable, and highly biocompatible forms that can be further manipulated into the functional matrix suitable in designing scaffolds for tissue engineering and regenerative medical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2012.690280 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!