Primary autologous B-lymphocytes, following gene transfer and re-implantation, have been successfully utilized to prevent autoimmune disease and adaptive responses to therapeutic proteins in several animal models. However, efficient gene transfer to primary B cells requires use of retroviral vectors, which increase the risk of insertional mutagenesis. Here, we evaluated several alternative gene transfer approaches. Resting splenic B cells were purified and activated with LPS, and GFP gene transfer was performed by means of nucleofection, lipofectamine, adenoviral infection, or murine retroviral infection. The Adenoviral (Ad) vectors were added to B cell cultures with or without calcium phosphate precipitation. For transfection and nucleofection, naked plasmid DNA was utilized. Nucleofection technology represents a modified electroporation technique for effective transfer of nucleic acids to the nucleus and thus enhances the efficiency of transfer particularly for primary cells. Efficiency of gene transfer was determined by flow cytometry using GFP, CD19, and a vital dye as markers. Nucleofection yielded the highest level of gene transfer with 60-65% of B cells being GFP+. Efficiencies were 30-35% for retrovirus, 20% for Ad5/11, 15% for Ad5/35, and 5% for lipofectamine-mediated transfection. Calcium phosphate precipitation increased efficiencies for Ad vectors to 30% (Ad5/11) and 25% (Ad5/35). Lipofectamin caused the greatest cell death at 80%, followed by nucleofection (35%), and viral vector (10-15% in each case). For all methods, gene transfer efficiencies were nearly identical for B cells from C57BL/6 or C3H/HeOuJ mice. In conclusion, recent advances in gene transfer technologies provide alternatives to retroviral vectors for primary B cells. If stable gene transfer is desired, non-integrating vector systems may be combined with transposon- or phage integrase-based systems or future site-specific systems to achieve integration into the host B cell genome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615457 | PMC |
http://dx.doi.org/10.4172/2157-7412.1000103 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Environmental Microbiology Group, Institute of Water Research, University of Granada, 18003, Granada, Spain.
Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.
View Article and Find Full Text PDFJ Exp Med
March 2025
Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses.
View Article and Find Full Text PDFmBio
January 2025
Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
Unlabelled: Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the variable segments of bacterial genomes that can fluctuate significantly in gene content. However, due to the transient and hypervariable nature of many accessory elements, the value of the added resolution in outbreak investigations remains disputed.
View Article and Find Full Text PDFBreed Sci
September 2024
Research Center of Genetic Resources, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
This review compiles information on the morphology, historical taxonomic treatments, species origin, gene pool concept, geographical and ecological habitats, and stress tolerance of the azuki bean () and related species. Willdenow (1802) first described the azuki bean in the genus , and Ohwi and Ohashi (1969) finally transferred it to the genus . The genus is currently divided into five subgenera: , , , , and .
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Reproductive Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: One potential cause of implantation failure is abnormal endometrial receptivity, and how to objectively evaluate endometrial receptivity has been a matter of great concern. Endometrial receptivity analysis (ERA), a next-generation sequencing-based test that assesses endometrial gene expression, may be valuable in predicting endometrial receptivity, but whether ERA improves pregnancy outcomes in patients with recurrent implantation failure (RIF) is currently controversial. The purpose of this study was to investigate the effect of ERA on pregnancy outcomes in patients with RIF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!