Semaphorin 4D (Sema4D) is a transmembrane protein that supports contact-dependent amplification of platelet activation by collagen before being gradually cleaved by the metalloprotease ADAM17, as we have previously shown. Cleavage releases a soluble 120-kDa exodomain fragment for which receptors exist on platelets and endothelial cells. Here we have examined the mechanism that regulates Sema4D exodomain cleavage. The results show that the membrane-proximal cytoplasmic domain of Sema4D contains a binding site for calmodulin within the polybasic region Arg762-Lys779. Coprecipitation studies show that Sema4D and calmodulin are associated in resting platelets, forming a complex that dissociates upon platelet activation by the agonists that trigger Sema4D cleavage. Inhibiting calmodulin with W7 or introducing a membrane-permeable peptide corresponding to the calmodulin-binding site is sufficient to trigger the dissociation of Sema4D from calmodulin and initiate cleavage. Conversely, deletion of the calmodulin-binding site causes constitutive shedding of Sema4D. These results show that (1) Sema4D is a calmodulin-binding protein with a site of interaction in its membrane-proximal cytoplasmic domain, (2) platelet agonists cause dissociation of the calmodulin-Sema4D complex, and (3) dissociation of the complex is sufficient to trigger ADAM17-dependent cleavage of Sema4D, releasing a bioactive fragment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656454PMC
http://dx.doi.org/10.1182/blood-2012-11-470609DOI Listing

Publication Analysis

Top Keywords

sema4d
10
domain sema4d
8
platelet activation
8
membrane-proximal cytoplasmic
8
cytoplasmic domain
8
sema4d calmodulin
8
calmodulin-binding site
8
sufficient trigger
8
cleavage
5
identification calmodulin-binding
4

Similar Publications

Semaphorin-4D signaling in recruiting dental stem cells for vascular stabilization.

Stem Cell Res Ther

January 2025

Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR.

Background: Achieving a stable vasculature is crucial for tissue regeneration. Endothelial cells initiate vascular morphogenesis, followed by mural cells that stabilize new vessels. This study investigated the in vivo effects of Sema4D-Plexin-B1 signaling on stem cells from human exfoliated deciduous teeth (SHED)-supported angiogenesis, focusing on its mechanism in PDGF-BB secretion.

View Article and Find Full Text PDF

Downregulation of N6-Methyladenosine (m6A) Methylation of Sema4D mRNA Contributes to Treg Dysfunction and Allograft Rejection.

Am J Transplant

January 2025

Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China; Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Chengdu, Sichuan Province, China. Electronic address:

Regulatory T cells (Tregs) has been shown to be involved in the induction of transplantation tolerance in numerous models. Our previous work demonstrated that METTL14 loss impaired Treg function and hindered the establishment of transplantation tolerance. However, the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

The Role of Immune Semaphorins in Sepsis-A Prospective Cohort Study.

Microorganisms

December 2024

Department for Infectious Diseases, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.

In sepsis, a balanced pro-inflammatory and anti-inflammatory response results in the bacterial clearance and resolution of inflammation, promoting clinical recovery and survival. Semaphorins, a large family of secreted and membrane-bound glycoproteins, are newly recognized biomarkers and therapeutic targets in immunological and neoplastic disorders. Although semaphorins might also be a crucial part of host defense responses to infection, their role in sepsis is yet to be determined.

View Article and Find Full Text PDF

Plexins: Navigating through the neural regulation and brain pathology.

Neurosci Biobehav Rev

January 2025

Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana,  India. Electronic address:

Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity.

View Article and Find Full Text PDF

Unlabelled: Semaphorins are an immunoregulatory protein family. Plexins bind semaphorins (SEMAs) and can form receptor complexes that give them chemotactic capacity. The role and expression profile of semaphorins and plexins in inflammatory bowel disease (IBD) is currently unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!