Background: Chemo-resistance to cisplatin-centered cancer therapy is a major obstacle to effective disease treatment. Recently, salinomycin was proven to be highly-effective for the elimination of cancer stem cells both in vitro and in vivo. The objective of the present study was to evaluate the anticancer properties of salinomycin in cisplatin-resistant ovarian cancer cells (A2780cis).
Materials And Methods: The tetrazolium dye (MTT) assay was used to determine cell viability. Flow cytometric analysis was performed to analyze the effect on cell cycle and apoptosis. The expression of apoptosis-related proteins was evaluated by western blot analysis.
Results: Cell viability was significantly reduced by salinomycin treatment in a dose-dependent manner. Flow cytometry showed an increase in sub-G1 phase cells. Salinomycin increased the expression of death receptor-5 (DR5), caspase-8 and Fas-associated protein with death domain (FADD). A decline in the expression of FLICE-like inhibitory protein (FLIP), activation of caspase-3 and increased poly ADP-ribose polymerase (PARP) cleavage, triggered apoptosis. Furthermore, annexin-V staining also revealed the apoptotic induction.
Conclusion: These findings provide important insights regarding the activation of caspase-8 and DR5, to our knowledge, for the first time in salinomycin-treated cisplatin-resistant ovarian cancer and demonstrate that salinomycin could be a prominent anticancer agent.
Download full-text PDF |
Source |
---|
Int J Mol Sci
January 2025
Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia.
A major challenging problem facing effective ovarian cancer therapy is cisplatin resistance. Re-sensitization of cisplatin-resistant ovarian cancer cells to cisplatin (CDDP) has become a critical issue. Curcumin (CUR), the most abundant dietary polyphenolic curcuminoids derived from turmeric (), has achieved previously significant anti-cancer effects against human ovarian adenocarcinoma SKOV-3/CDDP cisplatin-resistant cells by inhibition the gene expression of the antioxidant enzymes (, , , and ), transcription factor and signaling pathway (//).
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Institute of Chemistry, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia.
In this study, we report the first example of acyclic (amino)(N-pyridinium)carbenoid gold(III) complexes synthesized via a coupling reaction between 2-pyridylselenyl chloride and Au(I)-bound isonitriles. The reaction involves an initial oxidative addition of the Se-Cl moiety to Au(I), followed by the nucleophilic addition of the pyridine fragment to the isonitrile's C≡N bond, furnishing a metallacycle. Importantly, this is the first example of the pyridine acting as a nucleophile towards metal-bound isonitriles.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Molecular and Biotechnology, Atomic Energy Commission of Syria (AECS), Syria.
Ovarian cancer is a common and lethal malignancy among women, whereas chemoresistance is one of the major challenges to its treatment and prognosis. Chemoresistance is a multifactorial phenomenon, involving various mechanisms that collectively modify the cell's response to treatment. Among the changes that arise in cells after acquiring chemoresistance is miRNA dysregulation.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Armii Krajowej 13/15, 42-200 Czestochowa, Poland.
This study investigates the structural, vibrational, and biological properties of novel palladium(II) and platinum(II) complexes with 5-chloro-7-azaindole-3-carbaldehyde (5ClL) and 4-chloro-7-azaindole-3-carbaldehyde (4ClL) ligands. Infrared and Raman spectroscopy, combined with DFT (ωB97X-D) calculations, provided valuable information about metal-ligand interactions, the or conformation of the aldehyde group in the ligands, and the presence of isomers in the metal complexes obtained in the solid state. tests were used to evaluate the antiproliferative activity of the novel complexes against several cancer cell lines, including ovarian cancer (A2780), cisplatin-resistant ovarian cancer (A2780cis), colon cancer (HT-29), and triple-negative breast cancer (MDA-MB-231), as well as normal mouse fibroblasts (BALB/3T3).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!