Microplates as a microreactor platform for microalgae research.

Biotechnol Prog

Escuela de Biotecnología y Alimentos, Tecnológico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, 64849, Monterrey, NL, México.

Published: January 2014

High-throughput platforms for microalgae screening are not yet commercially available. In this study, the feasibility of 96-well microplates was analyzed for microalgae research. Equivalence among wells, as culture microreactors, was investigated in controlled high CO2 conditions. Specific growth rates of two microalgae species, Scenedesmus sp. UTEX1589 and an environmental isolate, were significantly higher in border wells than in internal positions. Furthermore, growth rate gradients analyzed as contours throughout the platform were observed for Scenedesmus sp. However, the output variable exhibited high precision associated with a low coefficient of variation (CV), between 6.8 and 7.8%. In a demonstrative experiment to determine the effect of culture media dilution on six microalgae species, treatments were randomized in the central subset of a microplate. Results were consistent and statistically sound (CV 9.4-12.9%), and showed that microalgae species could grow with no detrimental effect in 50% (v/v) dilution of the culture medium. Provided border wells exclusion and a randomized design, 96-well microplates are a practical and statistical robust platform for microalgae research.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.1721DOI Listing

Publication Analysis

Top Keywords

microalgae species
12
platform microalgae
8
96-well microplates
8
border wells
8
microalgae
7
microplates microreactor
4
microreactor platform
4
microalgae high-throughput
4
high-throughput platforms
4
platforms microalgae
4

Similar Publications

The semiconductor copper tungstate (CuWO) may end up in aquatic ecosystems since it has the potential for water decontamination. The toxic effects of CuWO are totally unknown for eukaryotic organisms. In view of this, we aimed to evaluate the toxicity of CuWO particles (size of 161.

View Article and Find Full Text PDF

Microalgae offer a compelling platform for the production of commodity products, due to their superior photosynthetic efficiency, adaptability to nonarable lands and nonpotable water, and their capacity to produce a versatile array of bioproducts, including biofuels and biomaterials. However, the scalability of microalgae as a bioresource has been hindered by challenges such as costly biomass production related to vulnerability to pond crashes during large-scale cultivation. This study presents a pipeline for the genetic engineering and pilot-scale production of biodiesel and thermoplastic polyurethane precursors in the extremophile species .

View Article and Find Full Text PDF

The need for smart microalgal bioprospecting.

Nat Prod Bioprospect

January 2025

Faculty of Science, Climate Change Cluster (C3), Algal Biotechnology & Biosystems, University of Technology Sydney, Sydney, NSW, 2007, Australia.

Microalgae's adaptability and resilience to Earth's diverse environments have evolved these photosynthetic microorganisms into a biotechnological source of industrially relevant physiological functions and biometabolites. Despite this, microalgae-based industries only exploit a handful of species. This lack of biodiversity hinders the expansion of the microalgal industry.

View Article and Find Full Text PDF

Effects of using microalgae in poultry diets on the production and quality of meat and eggs: a review.

Br Poult Sci

January 2025

LEAF- Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, Portugal.

1. This review was conducted to examine the nutritional composition of microalgae and their effects as a feed ingredient in poultry diets, delving into their influence on the production and quality of meat and eggs. Data collection focused on peer-reviewed scientific articles, with no limitation on the temporal horizon.

View Article and Find Full Text PDF

Background: Large-scale coral bleaching events have become increasingly frequent in recent years. This process occurs when corals are exposed to high temperatures and intense light stress, leading to an overproduction of reactive oxygen species (ROS) by their endosymbiotic dinoflagellates. The ROS buildup prompts corals to expel these symbiotic microalgae, resulting in the corals' discoloration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!