Traumatic brain injury and ischemia can result in marked neuronal degeneration and residual impairment of cerebral function. However, no effective pharmacological treatment directed at tissues of the central nervous system (CNS) for acute intervention has been developed. The detailed pathophysiological cascade leading to -neurodegeneration in these conditions has not been elucidated, but cellular calcium overload and mitochondrial dysfunction have been implicated in a wide range of animal models involving degeneration of the CNS. In particular, activation of the calcium-induced mitochondrial permeability transition (mPT) is considered to be a major cause of cell death inferred by the broad and potent neuroprotective effects of -pharmacological inhibitors of mPT, especially modulators of cyclophilin activity and, more specifically, genetic inactivation of the mitochondrial cyclophilin, cyclophilin D. Reviewed are evidence and challenges that could bring on the dawning of mitochondrial medicine aimed at safeguarding energy supply following acute injury to the CNS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-7091-1434-6_61DOI Listing

Publication Analysis

Top Keywords

mitochondrial medicine
8
mitochondrial
5
cyclophilin-d inhibition
4
inhibition neuroprotection
4
neuroprotection dawn
4
dawn era
4
era mitochondrial
4
medicine traumatic
4
traumatic brain
4
brain injury
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!