The required for Mla12 resistance (RAR1) protein is essential for the plant immune response. In rice, a model monocot species, the function of Oryza sativa RAR1 (OsRAR1) has been little explored. In our current study, we characterized the response of a rice osrar1 T-DNA insertion mutant to infection by Magnaporthe oryzae, the causal agent of rice blast disease. osrar1 mutants displayed reduced resistance compared with wild type rice when inoculated with the normally virulent M. oryzae isolate PO6-6, indicating that OsRAR1 is required for an immune response to this pathogen. We also investigated the function of OsRAR1 in the resistance mechanism mediated by the immune receptor genes Pib and Pi5 that encode nucleotide binding-leucine rich repeat (NB-LRR) proteins. We inoculated progeny from Pib/osrar1 and Pi5/osrar1 heterozygous plants with the avirulent M. oryzae isolates, race 007 and PO6-6, respectively. We found that only Pib-mediated resistance was compromised by the osrar1 mutation and that the introduction of the OsRAR1 cDNA into Pib/osrar1 rescued Pib-mediated resistance. These results indicate that OsRAR1 is required for Pib-mediated resistance but not Pi5-mediated resistance to M. oryzae.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887888PMC
http://dx.doi.org/10.1007/s10059-013-2317-6DOI Listing

Publication Analysis

Top Keywords

pib-mediated resistance
12
oryza sativa
8
sativa rar1
8
resistance
8
magnaporthe oryzae
8
immune response
8
response rice
8
osrar1
8
osrar1 required
8
rice
5

Similar Publications

SH3P2, an SH3 domain-containing protein that interacts with both Pib and AvrPib, suppresses effector-triggered, Pib-mediated immunity in rice.

Mol Plant

December 2022

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China; Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, Fuzhou, P.R. China; Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology, Fuzhou, China; Fuzhou Branch, National Rice Improvement Center of China, Fuzhou, China; Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China; Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China. Electronic address:

Plants usually keep resistance (R) proteins in a static state under normal conditions to avoid autoimmunity and save energy for growth, but R proteins can be rapidly activated upon perceiving pathogen invasion. Pib, the first cloned blast disease R gene in rice, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, mediates resistance to the blast fungal (Magnaporthe oryzae) isolates carrying the avirulence gene AvrPib. However, the molecular mechanisms about how Pib recognizes AvrPib and how it is inactivated and activated remain largely unclear.

View Article and Find Full Text PDF

Plant nucleotide-binding and leucine-rich repeat (NLR) receptors recognize avirulence effectors directly through their integrated domains (IDs) or indirectly via the effector-targeted proteins. Previous studies have succeeded in generating designer NLR receptors with new recognition profiles by engineering IDs or targeted proteins based on prior knowledge of their interactions with the effectors. However, it is yet a challenge to design a new plant receptor capable of recognizing effectors that function by unknown mechanisms.

View Article and Find Full Text PDF

Rice blast, caused by the fungus Magnaporthe oryzae, is a highly damaging disease. Introducing genes, which confer a broad spectrum resistance to the disease, such as Pib, makes an important contribution to protecting rice production. However, little is known regarding the mechanistic basis of the products of such genes.

View Article and Find Full Text PDF

The avirulence gene is required for the resistance mediated by its cognate resistance gene , which has been intensively used in rice breeding programs in many Asian countries. However, the sequence diversity of among geographically distinct populations was recently shown to be increasing. Here, we selected a field population consisting of 248 rice blast isolates collected from a disease hotspot in Philippine for the analysis of haplotypes and their pathogenicity against .

View Article and Find Full Text PDF

The required for Mla12 resistance (RAR1) protein is essential for the plant immune response. In rice, a model monocot species, the function of Oryza sativa RAR1 (OsRAR1) has been little explored. In our current study, we characterized the response of a rice osrar1 T-DNA insertion mutant to infection by Magnaporthe oryzae, the causal agent of rice blast disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!