The induction of melanocytes from easily accessible stem cells has attracted attention for the treatment of melanocyte dysfunctions. We found that multilineage-differentiating stress-enduring (Muse) cells, a distinct stem cell type among human dermal fibroblasts, can be readily reprogrammed into functional melanocytes, whereas the remainder of the fibroblasts do not contribute to melanocyte differentiation. Muse cells can be isolated as cells positive for stage-specific embryonic antigen-3, a marker for undifferentiated human embryonic stem cells, and differentiate into cells representative of all three germ layers from a single cell, while also being nontumorigenic. The use of certain combinations of factors induces Muse cells to express melanocyte markers such as tyrosinase and microphthalmia-associated transcription factor and to show positivity for the 3,4-dihydroxy-L-phenylalanine reaction. When Muse cell-derived melanocytes were incorporated into three-dimensional (3D) cultured skin models, they localized themselves in the basal layer of the epidermis and produced melanin in the same manner as authentic melanocytes. They also maintained their melanin production even after the 3D cultured skin was transplanted to immunodeficient mice. This technique may be applicable to the efficient production of melanocytes from accessible human fibroblasts by using Muse cells, thereby contributing to autologous transplantation for melanocyte dysfunctions, such as vitiligo.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jid.2013.172DOI Listing

Publication Analysis

Top Keywords

muse cells
20
stem cells
12
cells
10
functional melanocytes
8
multilineage-differentiating stress-enduring
8
stress-enduring muse
8
cells distinct
8
distinct stem
8
human fibroblasts
8
melanocyte dysfunctions
8

Similar Publications

Article Synopsis
  • THBS1 is a secreted protein linked to cancer progression, with high levels found in pancreatic cancer (PC) correlating to poorer patient outcomes.
  • Functional experiments demonstrated that reducing THBS1 levels decreased PC cell growth and increased cell death, suggesting it promotes cancer cell survival and movement.
  • The study indicates that THBS1 influences cancer behavior primarily through the JAK2/STAT3 signaling pathway, and its suppression also slowed tumor growth in animal models.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers identified Muse cells, a type of pluripotent stem cell, which play a role in tissue repair and are found in higher numbers in patients with acute myocarditis compared to controls.
  • In biopsies from 17 patients with fulminant myocarditis, there were significantly more Muse cells present, indicating their potential involvement in the severity of myocardial injury.
  • The study suggests that these Muse cells might help in healing damaged heart tissue and could correlate with clinical outcomes during both acute and recovery phases of myocarditis.
View Article and Find Full Text PDF

Susceptibility of HPV-18 Cancer Cells to HIV Protease Inhibitors.

Viruses

October 2024

Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X 1106, Sovenga, Polokwane 0727, South Africa.

Cervical cancer cases continue to rise despite all the advanced screening and preventative measures put in place, which include human papillomavirus (HPV) vaccination. These soaring numbers can be attributed to the lack of effective anticancer drugs against cervical cancer; thus, repurposing the human immunodeficiency virus protease inhibitors is an attractive innovation. Therefore, this work was aimed at evaluating the potential anticancer activities of HIV-PIs against cervical cancer cells.

View Article and Find Full Text PDF

Curcumin (Cur), the primary curcuminoid found in L., has garnered significant attention for its potential anti-inflammatory and antibacterial properties. However, its hydrophobic nature significantly limits its bioavailability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!