Characterization of genome-reduced fission yeast strains.

Nucleic Acids Res

ASPEX Division, Research Center, Asahi Glass Co, Ltd, Yokohama, Kanagawa 221-8755, Japan.

Published: May 2013

The Schizosaccharomyces pombe genome is one of the smallest among the free-living eukaryotes. We further reduced the S. pombe gene number by large-scale gene deletion to identify a minimal gene set required for growth under laboratory conditions. The genome-reduced strain has four deletion regions: 168.4 kb in the left arm of chromosome I, 155.4 kb in the right arm of chromosome I, 211.7 kb in the left arm of chromosome II and 121.6 kb in the right arm of chromosome II. The deletions corresponded to a loss of 223 genes of the original ~5100. The quadruple-deletion strain, with a total deletion size of 657.3 kb, showed a decreased ability to uptake glucose and some amino acids in comparison with the parental strain. The strain also showed increased gene expression of the mating pheromone M-factor precursor and the nicotinamide adenine dinucleotide phosphate -specific glutamate dehydrogenase. There was also a 2.7-fold increase in the concentration of cellular adenosine triphosphate, and levels of the heterologous proteins, enhanced green fluorescent protein and secreted human growth hormone were increased by 1.7- and 1.8-fold, respectively. The transcriptome data from this study have been submitted to the Gene Expression Omnibus (GEO: http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE38620 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=vjkxjewuywgcovc&acc=GSE38620).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664816PMC
http://dx.doi.org/10.1093/nar/gkt233DOI Listing

Publication Analysis

Top Keywords

arm chromosome
16
left arm
8
gene expression
8
gene
5
characterization genome-reduced
4
genome-reduced fission
4
fission yeast
4
yeast strains
4
strains schizosaccharomyces
4
schizosaccharomyces pombe
4

Similar Publications

Purpose: Less than 5% of GI stromal tumors (GISTs) are driven by the loss of the succinate dehydrogenase (SDH) complex, resulting in a pervasive DNA hypermethylation pattern that leads to unique clinical features. Advanced SDH-deficient GISTs are usually treated with the same therapies targeting KIT and PDGFRA receptors as those used in metastatic GIST. However, these treatments display less activity in the absence of alternative therapeutic options.

View Article and Find Full Text PDF

Aim: The study was designed to evaluate molecular alterations, relevant to the prognosis and personalized therapy of salivary gland cancers (SGCs).

Materials And Methods: DNA was extracted from archival tissue of 40 patients with various SGCs subtypes. A targeted next-generation sequencing (NGS) panel was used for the identification of small-scale mutations, focal and chromosomal arm-level copy number changes.

View Article and Find Full Text PDF

Two dwarf bunt resistance QTLs were mapped to chromosome 6D, and KASP markers associated with the loci were developed and validated in a panel of regionally adapted winter wheats. UI Silver is an invaluable adapted resistant cultivar possessing the two identified QTL potentially associated with genes Bt9 and Bt10 and will be useful in future cultivar development to improve dwarf bunt resistance. Dwarf bunt, caused by Tilletia controversa, is a fungal disease of wheat that can cause complete loss of grain yield and quality during epidemics.

View Article and Find Full Text PDF

Deletion of the short arm of chromosome 1 (1p) increases recurrence rates in meningiomas by up to 33%, regardless of tumor grade, correlating with absence of intracellular alkaline phosphatase enzyme activity. Current screening methods for 1p deletion like fluorescence in situ hybridization (FISH) and loss of heterozygosity (LOH) analysis are resource-intensive. This study evaluated AlkaPhos, a novel fluorescent probe, for detecting alkaline phosphatase in meningioma cells and compared findings with FISH, LOH, and histochemical analysis.

View Article and Find Full Text PDF

Somatic copy number deletion of chromosome 22q in papillary thyroid carcinoma.

Eur Thyroid J

January 2025

S Chanock, Division of Cancer Epidemiology and Genetics, Laboratory of Genetic Susceptibility, National Cancer Institute, Bethesda, United States.

Deletion of the long q arm of chromosome 22 (22qDEL) is the most frequently identified recurrent somatic copy number alteration (SCNA) observed in papillary thyroid carcinoma (PTC). Since its role in PTC is not fully understood, we conducted a pooled analysis of genomic characteristics and clinical correlates in 1094 primary tumors from four published PTC genomic studies. The majority of PTC with 22qDEL exhibited arm-level loss of heterozygosity (86%); nearly all PTC with 22qDEL had losses in 22q12 and 13, which together constitute 70% of the q arm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!