Although pulmonary dosing of large porous particles has been shown to sustain drug delivery for a few days, there are no reports on safety or long term delivery. In this study we prepared large porous poly(lactide-co-glycolide) (PLGA) microparticles of celecoxib using supercritical fluid pressure-quench technology and demonstrated 4.8-, 15.7-, and 2.1-fold greater drug levels in lung, bronchoalveolar lavage fluid (BAL), and plasma compared to conventional microparticles on day 21 after a single intratracheal dosing of dry powders in A/J mice. Porous particle based delivery was 50.2-, 95.5-, and 7.7-fold higher compared to plain drug in the lung, BAL, and plasma, respectively. Toxicity of the formulations was assessed on day 21 following a fibrosis assessment protocol in A/J mice. There was no significant change in lactate dehydrogenase (LDH), total protein, and total cell counts in the BAL, and soluble collagen levels in the lung tissue following particle or drug treatments. Lung histology indicated no significant hyperplasia, granuloma, or collagen deposition in the treated groups. Chemopreventive potential of celecoxib porous particles was assessed in a benzo[a]pyrene (B[a]P) induced lung cancer model in A/J mice, on day 60 following a single intratracheal dose with or without single intravenous paclitaxel/carboplatin treatment. The combination group was more effective than individual groups, with the inhibition of tumor multiplicity and reduction of vascular endothelial growth factor in the BAL being 70 and 58%, respectively. Thus, large porous celecoxib-PLGA microparticles prepared using supercritical fluid technology exhibited sustained drug delivery and anti-tumor efficacy, without causing any significant toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2013.03.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!