Achieving sustainable biomaterials by maximising waste recovery.

Waste Manag

Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5DD, United Kingdom.

Published: June 2013

The waste hierarchy of 'reduce, reuse, recycle, recover' can be followed to improve the sustainability of a product, yet it is not applied in any meaningful way in the biomaterials industry which focuses more on sustainable sourcing of inputs. This paper presents the results of industry interviews and a focus group with experts to understand how waste recovery of biomaterials could become more widespread. Interview findings were used to develop three scenarios: (1) do nothing; (2) develop legislation; and (3) develop certification standards. These scenarios formed the basis for discussions at an expert focus group. Experts considered that action was required, rejecting the first scenario. No preference was apparent for scenarios (2) and (3). Experts agreed that there should be collaboration on collection logistics, promotion of demand through choice editing, product 'purity' could be championed though certification and there should be significant investment and research into recovery technologies. These considerations were incorporated into the development of a model for policy makers and industry to help increase biomaterial waste recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2013.03.005DOI Listing

Publication Analysis

Top Keywords

waste recovery
12
focus group
8
group experts
8
achieving sustainable
4
sustainable biomaterials
4
biomaterials maximising
4
waste
4
maximising waste
4
recovery
4
recovery waste
4

Similar Publications

Microbial Fuel Cells (MFCs) are innovative environmental engineering systems that harness the metabolic activities of microbial communities to convert chemical energy in waste into electrical energy. However, MFC performance optimization remains challenging due to limited understanding of microbial metabolic mechanisms, particularly with complex substrates under realistic environmental conditions. This study investigated the effects of substrate complexity (acetate vs.

View Article and Find Full Text PDF

Enzymes as green and sustainable tools for DNA data storage.

Chem Commun (Camb)

January 2025

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.

DNA is considered as an ideal supramolecular material for information storage with high storage density and long-term stability. Enzymes, as green and sustainable tools, offer several unique advantages for DNA-based information storage. These advantages include low cost and reduced generation of hazardous wastes during DNA synthesis, as well as the improvements in data reading speed and data recovery accuracy.

View Article and Find Full Text PDF

In order to enhance the aging resistance, high temperature stability and low temperature crack resistance of asphalt pavement materials, 0.06% oxidized graphene (GO) and 12% polyurethane (PU) were used as composite modifiers to modify the base asphalt. The RTFOT test was conducted to evaluate the anti-aging performance of the modified asphalt.

View Article and Find Full Text PDF

Pleurotus ostreatus is a nutrient-dense edible fungus renowned for its delicate texture, appealing flavor, and numerous potential health benefits. Simultaneous extraction within the framework of food resource processing facilitates the concurrent isolation and analysis of multiple target compounds. In this study, an ethanol/salt aqueous two-phase system (ATPS) was employed to extract polysaccharides (PS) and proteins from P.

View Article and Find Full Text PDF

High power output density organic thermoelectric devices for practical applications in waste heat harvesting.

Chem Soc Rev

January 2025

State Key Laboratory of Multiphase Flow in Power Engineering & School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710054, China.

Organic thermoelectric (TE) materials are of great interest for researchers in waste heat recovery, especially for waste heat harvesting at near room temperature. Significant progress has been achieved in terms of their figure of merit () values recently, which has presented new insights into the development of organic TE materials. For numerous practical applications of thermoelectric generators, where waste heat is unlimited and cost negligible, the primary goal has been switched to achieve high power output density rather than improving their heat-to-electricity conversion efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!