Centromere clustering during interphase is a phenomenon known to occur in many different organisms and cell types, yet neither the factors involved nor their physiological relevance is well understood. Using Drosophila tissue culture cells and flies, we identified a network of proteins, including the nucleoplasmin-like protein (NLP), the insulator protein CTCF, and the nucleolus protein Modulo, to be essential for the positioning of centromeres. Artificial targeting further demonstrated that NLP and CTCF are sufficient for clustering, while Modulo serves as the anchor to the nucleolus. Centromere clustering was found to depend on centric chromatin rather than specific DNA sequences. Moreover, unclustering of centromeres results in the spatial destabilization of pericentric heterochromatin organization, leading to partial defects in the silencing of repetitive elements, defects during chromosome segregation, and genome instability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2013.03.002DOI Listing

Publication Analysis

Top Keywords

centromere clustering
12
nucleolus centromere
8
nucleoplasmin homolog
4
homolog nlp
4
nlp mediates
4
mediates centromere
4
clustering
4
clustering anchoring
4
anchoring nucleolus
4
clustering interphase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!