This study evaluated the effects of weak transcranial direct current stimulation (tDCS), a new non-invasive brain stimulation technique, on amygdala-kindled rats. The seizure severity, i.e. seizure stage, afterdischarge duration (ADD), and AD threshold (ADT) in the animals were measured one day after the last cathodal tDCS session, comparing with those of pre-treatment controls. Furthermore, the effects of cathodal tDCS on cognitive function were also studied by a water maze test (WMT) two days after the last tDCS session. Cathodal tDCS treatment significantly improved the seizure stage and decreased ADD together with elevated ADT one day after the last tDCS session. The treatment also showed significant improvement in the performance of WMT. The findings suggest that cathodal tDCS has anticonvulsive after-effects last at least for one day on the amygdala-kindled rats and positively affects cognitive performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1179/1743132813Y.0000000170 | DOI Listing |
EClinicalMedicine
February 2025
Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
Background: Non-invasive neuromodulation is a promising approach for improving spasticity and motor function after stroke. However, it is still unclear which type of non-invasive neuromodulation is effective and evidence of important differences between them and botulinum toxin (BoNT) injection is limited. We aimed to assess the comparative efficacy and acceptability of non-invasive neuromodulation technologies and BoNT for post-stroke spasticity and motor function.
View Article and Find Full Text PDFJ Affect Disord
January 2025
School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany.
Aim: This study investigates the effects of transcranial direct current stimulation (tDCS) on brain network connectivity in individuals with obsessive-compulsive disorder (OCD).
Methods: In a randomized, double-blind, sham-controlled experimental design anodal tDCS (vs. sham) was applied in a total of 43 right-handed patients with OCD, targeting the right pre-supplementary motor area (pre-SMA).
Cerebellum
January 2025
Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Institute of Cognitive Neuroscience, National Central University, Taiwan.
Previous research demonstrated that transcranial alternating current stimulation (tACS) can induce phosphene perception. However, tACS involves rhythmic changes in the electric field and alternating polarity (excitatory vs. inhibitory phases), leaving the precise mechanism behind phosphene perception unclear.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
Stroke remains a leading cause of global disability and mortality despite advancements in acute interventions. Transcranial direct current stimulation (tDCS), a non-invasive neuromodulation technique, has primarily been studied for its effects on cortical excitability, with limited exploration of its neuroprotective and hemodynamic benefits. This review examines the role of tDCS in stroke, with a focus on neuroprotection in acute settings and cerebral blood flow (CBF) modulation in both acute and chronic phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!