Lung epithelia regulate the water flux between gas filled airways and the interstitial compartment in order to maintain organ function. Current methodology to assess transepithelial water transport is limited. We present a D2O dilution method to quantify submicroliter volumes of aqueous solutions on epithelial cell layers. Evaluating D2O/H2O mixtures using mid-infrared (2-25 μm) attenuated total reflection (ATR) spectroscopy, with a resolution of 0.06% vol/vol change, corresponding to 24 nL, was achieved. Using this method, we demonstrate that water transport across NCI-H441 lung epithelial cell layers and apical surface liquid (ASL) volumes are coupled to dexamethasone dependent amiloride-sensitive ion transport. However, contrary to current dogma, electrogenic transport is not rate-limiting for water transport. This clearly indicates the need to directly assess net water rather than ion transport across epithelial cell layers. The presented D2O dilution method enables such direct and quick quantification of transepithelial water transport with high resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac4002723DOI Listing

Publication Analysis

Top Keywords

water transport
20
transepithelial water
12
epithelial cell
12
cell layers
12
water
8
transport
8
d2o dilution
8
dilution method
8
ion transport
8
deuterium oxide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!