Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Radiation therapy plays a critical role in the current management of cancer patients. The most common linear accelerator-based treatment device delivers photons of radiation. In an ever more precise fashion, state-of-the-art technology has recently allowed for both modulation of the radiation beam and imaging for this treatment delivery. This has resulted in better patient outcome with far fewer side effects than were achieved even a decade ago. Recently, a push has begun for proton therapy, which may have clinical advantage in select indications, although significant limitations for these devices have become apparent. In addition, currently, heavy particle therapy has been touted as a potential means to improve cancer patient outcomes. This article will highlight current benefits and drawbacks to modern radiation therapy and speculate on future tools that will likely dramatically improve radiation oncology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2217/fon.13.13 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!