We reanalyzed data collected in a large family study of idiopathic torsion dystonia (ITD) using complex segregation analysis. Previous investigators concluded that the mode of inheritance of ITD differed between Jews and non-Jews. The results from our segregation analyses suggest that ITD is inherited as an autosomal dominant trait, with low penetrance (0.255 to 0.333), regardless of ethnic origin. The low penetrance implies that, although a major gene is important for the expression of the illness, other factors also contribute to the manifestations of ITD.

Download full-text PDF

Source
http://dx.doi.org/10.1212/wnl.40.7.1107DOI Listing

Publication Analysis

Top Keywords

complex segregation
8
segregation analysis
8
autosomal dominant
8
low penetrance
8
analysis dystonia
4
dystonia pedigrees
4
pedigrees suggests
4
suggests autosomal
4
dominant inheritance
4
inheritance reanalyzed
4

Similar Publications

Matching model with mechanism: Appropriate rodent models for studying various aspects of diabetes pathophysiology.

Methods Cell Biol

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom. Electronic address:

Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans.

View Article and Find Full Text PDF

Lipoprotein Lipase: Structure, Function, and Genetic Variation.

Genes (Basel)

January 2025

Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada.

Biallelic rare pathogenic loss-of-function (LOF) variants in lipoprotein lipase () cause familial chylomicronemia syndrome (FCS). Heterozygosity for these same variants is associated with a highly variable plasma triglyceride (TG) phenotype ranging from normal to severe hypertriglyceridemia (HTG), with longitudinal variation in phenotype severity seen often in a given carrier. Here, we provide an updated overview of genetic variation in in the context of HTG, with a focus on disease-causing and/or disease-associated variants.

View Article and Find Full Text PDF

The design of functional artificial cells involves compartmentalizing biochemical processes to mimic cellular organization. To emulate the complex chemical systems in biological cells, it is necessary to incorporate an increasing number of cellular functions into single compartments. Artificial organelles that spatially segregate reactions inside artificial cells will be beneficial in this context by rectifying biochemical pathways.

View Article and Find Full Text PDF

This study describes the results of whole exome sequencing in the etiological investigation and genetic counseling of families presenting with non-syndromic oral clefts with vertical transmission recorded in the Brazilian Database on Craniofacial Anomalies. Whole exome sequencing was performed in 18 families presenting with non-syndromic oral clefts with vertical transmission, and variant filtering was used to identify rare, and also possibly pathogenic variants in genes associated with oral clefts. Overall, our study identified seven families (38.

View Article and Find Full Text PDF

Centromeric chromatin clearings demarcate the site of kinetochore formation.

Cell

January 2025

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry, Biophysics, Chemical Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:

The centromere is the chromosomal locus that recruits the kinetochore, directing faithful propagation of the genome during cell division. Using cryo-ET on human mitotic chromosomes, we reveal a distinctive architecture at the centromere: clustered 20- to 25-nm nucleosome-associated complexes within chromatin clearings that delineate them from surrounding chromatin. Centromere components CENP-C and CENP-N are each required for the integrity of the complexes, while CENP-C is also required to maintain the chromatin clearing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!