The exogenous siRNA pathway is important in restricting arbovirus infection in mosquitoes. Less is known about the role of the PIWI-interacting RNA pathway, or piRNA pathway, in antiviral responses. Viral piRNA-like molecules have recently been described following infection of mosquitoes and derived cell lines with several arboviruses. The piRNA pathway has thus been suggested to function as an additional small RNA-mediated antiviral response to the known infection-induced siRNA response. Here we show that piRNA-like molecules are produced following infection with the naturally mosquito-borne Semliki Forest virus in mosquito cell lines. We show that knockdown of piRNA pathway proteins enhances the replication of this arbovirus and defines the contribution of piRNA pathway effectors, thus characterizing the antiviral properties of the piRNA pathway. In conclusion, arbovirus infection can trigger the piRNA pathway in mosquito cells, and knockdown of piRNA proteins enhances virus production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709635 | PMC |
http://dx.doi.org/10.1099/vir.0.053850-0 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
December 2024
ADP-ribosylation factor collaborator (CARF), which is also known as CDKN2AIP, was first recognized as an ADP-ribosylation factor-interacting protein that participates in the activation of the ARF-p53-p21 (WAF1) signaling pathway under different conditions, such as oxidative and oncogenic stresses. The activation of this pathway often leads to cell growth arrest and apoptosis as well as senescence. Previous studies revealed that CARF, an RNA-binding protein, is critical for maintaining stem cell pluripotency and somatic differentiation.
View Article and Find Full Text PDFExp Cell Res
December 2024
Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, West Bengal, India. Electronic address:
The signaling pathways behind severe astrocytic lysis with Aquaporin4 auto-antibody (AQP4-IgG) seropositivity, and reactive astrocytosis with myelin oligodendrocyte glycoprotein auto-antibody (MOG-IgG) seropositivity, remain largely unexplored in Neuromyelitis optica spectrum disorder (NMOSD), while almost no molecular details being known about double-seronegative (DN) patients. Recent discovery of glial fibrillary acidic protein (GFAP) in DN NMOSD patients' cerebrospinal fluid, akin to AQP4-IgG + ve cases, suggests astrocytopathy. Here, we aim to study small non coding RNA (sncRNA) signature alterations in astrocytes exposed to AQP4-IgG + ve and MOG-IgG + ve patient sera, and their potential resemblance with DN-NMOSD.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2024
Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
bioRxiv
November 2024
Department of Human Genetics, University of California, Los Angeles, CA, USA.
Toxin-antidote elements (TAs) are selfish DNA sequences that bias their transmission to the next generation. TAs typically consist of two linked genes: a toxin and an antidote. The toxin kills progeny that do not inherit the TA, while the antidote counteracts the toxin in progeny that inherit the TA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!