A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly effective water oxidation catalysis with iridium complexes through the use of NaIO4. | LitMetric

Exceptional water oxidation (WO) turnover frequencies (TOF=17,000 h(-1)), and turnover numbers (TONs) close to 400,000, the largest ever reported for a metal-catalyzed WO reaction, have been found by using [Cp*Ir(III)(NHC)Cl2] (in which NHC=3-methyl-1-(1-phenylethyl)-imidazoline-2-ylidene) as the pre-catalyst and NaIO4 as oxidant in water at 40 °C. The apparent TOF for [Cp*Ir(III)(NHC)X2] (1X, in which X stands for I (1I), Cl (1Cl), or triflate anion (1OTf)) and [(Cp*-NHCMe)Ir(III)I2] (2) complexes, is kept constant during almost all of the O2 evolution reaction when using NaIO4 as oxidant. The TOF was found to be dependent on the ligand and on the anion (TOF ranging from ≈600 to ≈1100 h(-1) at 25 °C). Degradation of the complexes by oxidation of the organic ligands upon reaction with NaIO4 has been investigated. (1)H NMR, ESI-MS, and dynamic light-scattering measurements (DLS) of the reaction medium indicated that the complex undergoes rapid degradation, even at low equivalents of oxidant, but this process takes place without formation of nanoparticles. Remarkably, three-month-old solution samples of oxidized pre-catalysts remain equally as active as freshly prepared solutions. A UV/Vis feature band at λmax =405 nm is observed in catalytic reaction solutions only when O2 evolves, which may be attributed to a resting state iridium speciation, most probably Ir-oxo species with an oxidation state higher than IV.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201204568DOI Listing

Publication Analysis

Top Keywords

water oxidation
8
naio4 oxidant
8
reaction naio4
8
reaction
5
highly effective
4
effective water
4
oxidation
4
oxidation catalysis
4
catalysis iridium
4
iridium complexes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!