Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conductance catheters are known to have a nonuniform spatial sensitivity due to the distribution of the electric field. The Geselowitz relation is applied to murine and multisegment conductance catheters using finite element models to determine the spatial sensitivity in a uniform medium and simplified left ventricle models. A new formulation is proposed that allows determination of the spatial sensitivity to admittance. Analysis of FEM numerical modeling results using the Geselowitz relation provides a true measure of parallel conductance in simplified left ventricle models for assessment of the admittance method and hypertonic saline techniques. The spatial sensitivity of blood conductance (Gb) is determined throughout the cardiac cycle. Gb is converted to volume using Wei's equation to determine if the presence of myocardium alters the nonlinear relationship through changes to the electric field. Results show that muscle conductance (Gm) from the admittance method matches results from the Geselowitz relation and that the relationship between Gb and volume is accurately fit using Wei's equation. Single-segment admittance measurements in large animals result in a more evenly distributed sensitivity to the LV blood pool. The hypertonic saline method overestimates parallel conductance throughout the cardiac cycle in both murine and multisegment conductance catheters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2013.2256134 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!