Telomerase was initially considered as a relevant factor distinguishing cancer from normal cells. During detailed studies, it appeared that its expression and activity is not only limited to cancer cells however, but in this particular cells, the telomerase is much more abundant. Thus, it has become a very promising target for an anticancer therapy. It was revealed in many studies that regulation of telomerase is a multifactorial process in mammalian cells, involving regulation of expression of telomerase subunits coding genes, post-translational protein-protein interactions, and protein phosphorylation. Numerous proto-oncogenes and tumor suppressor genes are engaged in this mechanism, and the complexity of telomerase control is studied in the context of tumor development as well as aging. Additionally, since numerous studies reveal a correlation between short telomeres and increased genome instability or cell mortality, the telomerase control appears to be one of the crucial factors to study in order to improve the cancer diagnostics and therapy or prevention. Interestingly, almost 100 % of adenocarcinoma, including breast cancer cells, expresses telomerase which makes it a good target for telomerase-related therapy. Additionally, telomerase is also supposed to be associated with drug resistance. Thus, targeting the enzyme might result in attenuation of this phenomenon. Moreover, since stem cells existence was reported, it must be considered whether targeting telomerase can bring some serious side effects and result in stem cells viability or their regenerative potential decrease. Thus, we review some molecular mechanisms engaged in therapy based on targeting telomerase in breast cancer cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661921 | PMC |
http://dx.doi.org/10.1007/s13277-013-0757-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!