The perivascular microenvironment helps in maintaining stem cells in many tissues. We sought to determine whether there is a perivascular niche for hair follicle stem cells. The association of vessels and follicle progenitor cells began by embryonic day 14.5, when nascent hair placodes had blood vessels approaching them. By birth, a vascular annulus stereotypically surrounded the keratin 15 negative (K15-) stem cells in the upper bulge and remained associated with the K15- upper bulge throughout the hair cycle. The angiogenic factor Egfl6 was expressed by the K15- bulge and was localized adjacent to the vascular annulus, which comprised post-capillary venules. Although denervation altered the phenotype of upper bulge stem cells, the vascular annulus persisted in surgically denervated mouse skin. The importance of the perivascular niche was further suggested by the fact that vascular annuli formed around the upper bulge of de novo-reconstituted hair follicles before their innervation. Together, these findings demonstrate that the upper bulge is associated with a perivascular niche during the establishment and maintenance of this specialized region of hair follicle stem cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742722 | PMC |
http://dx.doi.org/10.1038/jid.2013.167 | DOI Listing |
Electrophoresis
January 2025
Institute of Forensic Science, Fudan University, Shanghai, P. R. China.
The human skin and oral cavity harbor complex microbial communities, which exist in dynamic equilibrium with the host's physiological state and the external environment. This study investigates the microbial atlas of human skin and oral cavities using samples collected over a 10-month period, aiming to assess how both internal and external factors influence the human microbiome. We examined bacterial community diversity and stability across various body sites, including palm and nasal skin, saliva, and oral epithelial cells, during environmental changes and a COVID-19 pandemic.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Univ Lyon, Université Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, INRAE USC 1361, Bron, F-69500, France.
Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.
View Article and Find Full Text PDFCell Death Discov
January 2025
The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
Lin28 is a key regulator of cancer stem cell gene network that promotes therapy-resistant tumor progression in various tumors. However, no Lin28 inhibitor has been approved to treat cancer patients, urging exploration of novel compounds as candidates to be tested for clinical trials. In this contribution, we applied computer-aided drug design (CADD) in combination with quantitative biochemical and biological assays.
View Article and Find Full Text PDFBone Res
January 2025
National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China.
Tissue clearing combined with high-resolution confocal imaging is a cutting-edge approach for dissecting the three-dimensional (3D) architecture of tissues and deciphering cellular spatial interactions under physiological and pathological conditions. Deciphering the spatial interaction of leptin receptor-expressing (LepR) stromal cells with other compartments in the bone marrow is crucial for a deeper understanding of the stem cell niche and the skeletal tissue. In this study, we introduce an optimized protocol for the 3D analysis of skeletal tissues, enabling the visualization of hematopoietic and stromal cells, especially LepR stromal cells, within optically cleared bone hemisections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!