Quantum dot light-emitting diodes (QD-LEDs) are characterized by pure and saturated emission colors with narrow bandwidth. Optimization of the device interface is an effective way to achieve stable and high-performance QD-LEDs. Here we utilized solution-processed molybdenum oxide (MoOx) as the anode buffer layer on ITO to build efficient QD-LEDs. Using MoOx as the anode buffer layer provides the QD-LED with good Ohmic contact and a small charge transfer resistance. The device luminance is nearly independent of the thickness of the MoOx anode buffer layer. The QD-LEDs with a MoOx anode buffer layer exhibit a maximum luminance and luminous efficiency of 5230 cd m(-2) and 0.67 cd A(-1) for the yellow emission at 580 nm, and 7842 cd m(-2) and 1.49 cd A(-1) for the red emission at 610 nm, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/24/17/175201 | DOI Listing |
Nat Commun
January 2025
Analytical Engineering Group, Samsung Advanced Institute of Technology, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea.
To reliably operate anode-less solid-state Li metal batteries, wherein precipitated Li acts as the anode, stabilizing the interface between the solid electrolyte and electrode is crucial. The interface can be controlled by a metal interlayer on the electrolyte to form a Li alloy buffer that facilitates stable Li plating/stripping, thereby mitigating the loss of physical contact and preventing short circuits. However, the mechanism governing stable Li plating/stripping in the metal interlayer without degrading battery materials remains unclear owing to an incomplete understanding of the dynamic and complex electrochemical reactions in the solid state.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Middle Tennessee State University, 440 Friendship Street, Murfreesboro, TN 37132, USA.
Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).
View Article and Find Full Text PDFMolecules
January 2025
Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Avenue 90-92, District 5, 050663 Bucharest, Romania.
This paper summarizes the main findings of a study which aimed to examine the electrochemical oxidation of homovanillic acid (HVA), the final metabolite of dopamine. A pencil graphite electrode (PGE) was used as working electrode and the measurements were performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The type and the composition of the graphite leads used as PGE, the pH of the supporting electrolyte, as well as the scan rates were optimized by CV.
View Article and Find Full Text PDFLangmuir
January 2025
Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing 100192, China.
In this work, laser-induced graphene from kraft paper (kraft paper-LIG) was employed for the nonenzymatic electrochemical sensing of dopamine (DA). We reported the fabrication and characterization of a disposable, cost-effective, kraft-based electrochemical dopamine sensor with the sensing electrode consisting of laser-induced graphene derived from kraft paper. Kraft paper-LIG was formed by the femtosecond laser modification of kraft paper into a three-dimensional (3D) graphene arrangement.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
LABEL-Laboratório de Bioeletrônica e Eletroanalítica, Central Analítica Multidisciplinar, Universidade Federal do Amazonas, Manaus 69067-005, Amazonas, Brazil.
Biosensors harness biological materials as receptors linked to transducers, enabling the capture and transformation of primary biorecognition signals into measurable outputs. This study presents a novel carboxylation method for synthesizing carboxylated graphene (CG) under acidic conditions, enhancing biosensing capabilities. The characterization of the CG was performed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, thermogravimetric analysis (TGA), and X-ray diffraction (XRD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!