A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

hsBAFF promotes proliferation and survival in cultured B lymphocytes via calcium signaling activation of mTOR pathway. | LitMetric

B-cell activating factor of the TNF family (BAFF, also called BLyS, TALL-1, THANK, or zTNF4) has revealed its critical function in B lymphocyte proliferation and survival, as well as the pathogenesis of autoimmune disease. However, the molecular mechanisms of excess BAFF-extended aggressive B lymphocytes have not been completely defined. Here we show that excessive hsBAFF-elevated [Ca(2+)]i activated mammalian target of rapamycin (mTOR) signaling pathway, leading to proliferation and survival in B lymphocytes. This is supported by the findings that intracellular Ca(2+) chelator (BAPTA/AM) or mTOR inhibitor (rapamycin) abolished the events. Sequentially, we observed that preventing [Ca(2+)]i elevation using EGTA or 2-APB dramatically inhibited hsBAFF activation of mTOR signaling, as well as cell growth and survival, suggesting that hsBAFF-induced extracellular Ca(2+) influx and ER Ca(2+) release elevates [Ca(2+)]i contributing to B lymphocyte proliferation and survival via activation of mTOR signaling. Further, we noticed that pretreatment with BAPTA/AM, EGTA or 2-APB blocked hsBAFF-increased phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII), and inhibiting CaMKII with KN93 attenuated hsBAFF-activated mTOR signaling, as well as cell growth and survival, revealing that the effects of hsBAFF-elevated [Ca(2+)]i on mTOR signaling as well as proliferation and survival in B lymphocytes is through stimulating phosphorylation of CaMKII. The results indicate that hsBAFF activates mTOR pathway triggering B lymphocyte proliferation and survival by calcium signaling. Our findings suggest that manipulation of intracellular Ca(2+) level or CaMKII and mTOR activity may be exploited for the prevention of excessive BAFF-induced aggressive B lymphocyte disorders and autoimmune diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cyto.2013.03.011DOI Listing

Publication Analysis

Top Keywords

proliferation survival
24
mtor signaling
20
activation mtor
12
lymphocyte proliferation
12
signaling well
12
mtor
9
survival
8
calcium signaling
8
mtor pathway
8
hsbaff-elevated [ca2+]i
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!