The northern Indian subcontinent has frequently been identified as a hotspot for land atmosphere interactions. It is also a region with the highest concentration of irrigated land and highest (and increasing) population density in the world. The available water in the region with which to grow food depends on the Asian monsoon, groundwater and melt from Himalayan snows. Any changes or disruptions to these sources of water could threaten the food supply. It is therefore essential to understand how the land surface, and in particular irrigated land, interacts with the atmosphere. It is anticipated that the interactions will occur on many scales. To an extent the magnitude and form of these will depend on the depth of the atmosphere which is affected. Thus at the local, or micro, scale it is the surface layer (some 10 s m deep) which is cooled and moistened by the evaporation of irrigated water, at the meso-scale the Planetary boundary layer (up to 1 or 2 km) will be modified - with possible atmospheric moistening, increased cloud and rain formation and at very large scales the whole dynamics of the south Asian Monsoon will be affected. This illustrates a strong interaction between the Asian monsoon and the regional topography. Of considerable significance is the finding in this paper that up to 60% of the evaporation from irrigated areas in the summer months is ultimately recycled to Himalayan rainfall and so feedbacks to river flows in the Ganges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2013.03.016 | DOI Listing |
Gene
January 2025
College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui, 237012, China. Electronic address:
The East Asian tulips (Amana spp.), which are endemic to East Asia, include the species A. edulis, recognized as the source of the traditional Chinese medicine (TCM) known as "Guangcigu.
View Article and Find Full Text PDFMol Biol Evol
January 2025
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
Southwest China is characterized by high plateaus, large mountain systems, and deeply incised dry valleys formed by major rivers and their tributaries. Despite the considerable attention given to alpine plant radiations in this region, the timing and mode of diversification of the numerous dry valley plant lineages remain unknown. To address this knowledge gap, we investigated the macroevolution of Isodon (Lamiaceae), a lineage commonly distributed in the dry valleys in southwest China and wetter areas of Asia and Africa.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Science, Henan Agricultural University, Zhengzhou, China.
Background: Assessing the current status and identifying the mechanisms threatening endangered plants are significant challenges and fundamental to biodiversity conservation, particularly for protecting Tertiary relict trees and plant species with extremely small populations (PSESP). Ulmus elongata (Ulmus, Ulmaceae) with high values for the ornamental application, is a Tertiary relict tree species and one of the members from PSESP in China. Currently, the wild populations of U.
View Article and Find Full Text PDFNat Commun
January 2025
School of Atmospheric Sciences, Sun Yat-Sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
The boreal summer circumglobal teleconnection (CGT) provides a primary predictability source for mid-latitude Northern Hemisphere climate anomalies and extreme events. Here, we show that the CGT's circulation structure has been displaced westward by half a wavelength since the late 1970s, more severely impacting heatwaves and droughts over East Europe, East Asia, and southwestern North America. We present empirical and modelling evidence of the essential role of El Niño-Southern Oscillation (ENSO) in shaping this change.
View Article and Find Full Text PDFNat Commun
January 2025
National Oceanography Centre, Southampton, UK.
Multiple tipping points in the Earth system could be triggered when global warming exceeds specific thresholds. However, the degree of their impact on the East Asian hydroclimate remains uncertain due to the lack of quantitative rainfall records. Here we present an ensemble reconstruction of East Asian summer monsoon (EASM) rainfall since the Last Glacial Maximum (LGM) using nine statistical and machine learning methods based on multi-proxy records from a maar lake in southern China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!