Synthesis of hollow gold nanoparticles on the surface of indium tin oxide glass and their application for plasmonic biosensor.

Spectrochim Acta A Mol Biomol Spectrosc

The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Material Science, Soochow University, Suzhou, Jiangsu 215123, PR China.

Published: June 2013

Hollow gold nanoparticles (HGNs) deposited on the surface of transparent indium tin oxide (ITO) glass have been synthesized. The silver nanoparticles were firstly electrodeposited directly on the ITO surface as a template without any organic ligands or surfactants. Then these silver nanoparticles were taken as sacrificial templates and the HGNs were obtained by Galvanic replacement reaction between HAuCl4 solution and silver nanoparticles. The localized surface plasmon resonance (LSPR) peak of HGNs was located at near infrared region of ~800 nm, which was largely red-shifted as compared to silver nanoparticles as a template. Moreover, the refractive index sensitivity of HGNs was enhanced to 277 nm per refractive index unit, which was also much higher than that of silver nanoparticles deposited on ITO substrate. The "clean" surface of HGNs could be further functionalized by special biomolecules and applied to fabrication of LSPR biosensors. This approach provides a potential opportunity as LSPR biosensors for chemical or biological analysis especially on tissue and blood samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2013.03.024DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
20
hollow gold
8
gold nanoparticles
8
indium tin
8
tin oxide
8
lspr biosensors
8
nanoparticles
7
surface
5
hgns
5
silver
5

Similar Publications

An innovative magnetic immunoassay was developed for the voltammetric detection of carbohydrate antigen-125 (CA-125) on a home-made microfluidic device including a multisyringe pump, selection valve and magneto-controlled detection cell. Two kinds of biofunctionalized nanostructures including anti-CA-125 capture antibody-conjugated magnetic beads and anti-CA-125 detection antibody-labeled silver-polypyrrole (Ag-PPy) nanohybrids were utilized for a sandwiched immunoreaction in the presence of CA-125. With the help of an external magnet, the formed magnetic immunocomplexes were attached to the sensing interface to activate the electrical contact between Ag-PPy nanohybrids and the base electrode, thus resulting in the switching on of the sensor circuit for the generation of voltammetric signals thanks to electroactive Ag-PPy nanohybrids.

View Article and Find Full Text PDF

Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core-satellite assemblies.

Anal Methods

November 2017

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.

As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.

View Article and Find Full Text PDF

Threshold determination forms an integral part of sensory and consumer studies applied for product control and development. The authors examined the potential of an impedimetric electronic tongue to discriminate basic tastes and consider limitations pertaining to the sensory evaluation process. Three samples at lower, medium, and higher concentration levels of basic taste compounds were prepared and subjected to consumer studies (n = 60) using the difference from-control (DFC) test.

View Article and Find Full Text PDF

Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!