We previously mapped a locus on BALB/c chromosome 2 associated with protection from leptin-deficiency-induced obesity. Here, we generated the corresponding congenic mouse strain by introgression of a segment of C57BL/6J chromosome 2 to the BALB/c background to confirm the genotype-phenotype associations. We found that the BALB/c alleles decreased fat mass expansion by limiting adipocyte hyperplasia and adipocyte hypertrophy. This was concomitant to an increase in adipocyte triglyceride lipase (ATGL)-mediated triglyceride breakdown and prolongation of ATGL half-life in adipose tissue. In addition, BALB/c alleles on chromosome 2 exerted a cell-autonomous role in restraining the adipogenic potential of preadipocytes. Within a 9.8-Mb critical interval, we identified a nonsynonymous coding single nucleotide polymorphism in the gene coding for the ubiquitin-conjugating enzyme E2L6 (Ube2l6, also known as Ubch8) and showed that the BALB/c allele of Ube2l6 is a hypomorph leading to the lack of UBE2L6 protein expression. Ube2l6 knockdown in 3T3-L1 adipocytes repressed adipogenesis. Thus, altered adipogenic potential caused by Ube2l6 knockdown is likely critically involved in BALB/c obesity resistance by inhibiting adipogenesis and reducing adipocyte numbers. Overall, we have identified a loss-of-function mutation in Ube2l6 that contributes to the chromosome 2 obesity quantitative trait locus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717837PMC
http://dx.doi.org/10.2337/db12-1054DOI Listing

Publication Analysis

Top Keywords

loss-of-function mutation
8
mutation ube2l6
8
obesity resistance
8
balb/c alleles
8
adipogenic potential
8
ube2l6 knockdown
8
ube2l6
7
balb/c
6
identification loss-of-function
4
ube2l6 associated
4

Similar Publications

Signal transducer and activator of transcription 1 (STAT1) gene mutations have broad clinical phenotypes, classified by the inheritance pattern and functional state. Individuals with autosomal dominant STAT1 deficiency are more susceptible to intracellular bacteria, the hallmark of which is Mendelian susceptibility to mycobacterial diseases (MSMDs) that are associated with increased risks of invasive disease by weakly virulent mycobacteria. We report a novel heterozygous missense mutation in exon 23 of the STAT1 gene (NM_007315.

View Article and Find Full Text PDF

Stomatal abundance sets plants' potential for gas exchange, impacting photosynthesis and transpiration and, thus, plant survival and growth. Stomata originate from cell lineages initiated by asymmetric divisions of protodermal cells, producing meristemoids that develop into guard cell pairs. The transcription factors SPEECHLESS, MUTE, and FAMA are essential for stomatal lineage development, sequentially driving cell division and differentiation events.

View Article and Find Full Text PDF

Background: Stargardt disease type 1 (STGD1) is a progressive retinal disorder caused by bi-allelic variants in the ABCA4 gene. A recurrent variant at the exon-intron junction of exon 6, c.768G>T, causes a 35-nt elongation of exon 6 that leads to premature termination of protein synthesis.

View Article and Find Full Text PDF

Telomeres are hypersensitive to the formation of the common oxidative lesion 8-oxoguanine (8oxoG), which impacts telomere stability and function. OGG1 and MUTYH glycosylases initiate base excision repair (BER) to remove 8oxoG or prevent mutation. Here, we show OGG1 loss or inhibition, or MUTYH loss, partially rescues telomeric 8oxoG-induced premature senescence and associated proinflammatory responses, while loss of both glycosylases causes a near complete rescue in human fibroblasts.

View Article and Find Full Text PDF

Insulin/IGF signaling (IIS) regulates developmental and metabolic plasticity. Conditional regulation of insulin-like peptide expression and secretion promotes different phenotypes in different environments. However, IIS can also be regulated by other, less-understood mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!