Background: Hepatic injury in dengue virus (DENV) infection is authenticated by hepatomegaly and an upsurge in transaminase levels. DENV replicates in hepatocytes and causes hepatocyte apoptosis both in vitro and in vivo. Understanding the molecular mechanisms of DENV-induced hepatic injury could facilitate the development of alternate chemotherapeutic agents and improved therapies.

Findings: The p38 mitogen-activated protein kinase (MAPK) participates in both apoptosis-related signaling and pro- inflammatory cytokine production. The role of p38 MAPK in DENV-infected HepG2 cells was examined using RNA interference. The results showed that DENV infection activated p38 MAPK and induced apoptosis. The p38 MAPK activation and TNF-α production were controlled by p38 MAPK and CD137 signaling in DENV-infected HepG2 cells as activated p38 MAPK, TNF-α and apoptosis were significantly decreased in p38 MAPK and CD137 depleted DENV-infected HepG2 cells. Addition of exogenous TNF-α to p38 MAPK depleted DENV-infected HepG2 cells restored DENV-induced apoptosis in HepG2 cells.

Conclusion: DENV induces CD137 signaling to enhance apoptosis by increasing TNF-α production via activation of p38 MAPK.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3639879PMC
http://dx.doi.org/10.1186/1743-422X-10-105DOI Listing

Publication Analysis

Top Keywords

p38 mapk
32
denv-infected hepg2
16
hepg2 cells
16
cd137 signaling
12
p38
9
mapk
9
hepatic injury
8
denv infection
8
activated p38
8
tnf-α production
8

Similar Publications

Proliferating animal cells maintain a stable size distribution over generations despite fluctuations in cell growth and division size. Previously, we showed that cell size control involves both cell size checkpoints, which delay cell cycle progression in small cells, and size-dependent regulation of mass accumulation rates (Ginzberg et al., 2018).

View Article and Find Full Text PDF

Invasion and metastasis are major causes of mortality in breast cancer (BRCA) patients. LHPP, known for its tumor-suppressive effects, has an undefined role in BRCA. We found reduced LHPP protein in BRCA tissues, with lower levels correlating with poor patient outcomes.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Huanglian Ganjiang decoction (HGD), which is composed of Chinese medicines with cold, warm, and astringent properties, has demonstrated significant therapeutic efficacy in ulcerative colitis (UC). However, the underlying mechanisms remain unclear, highlighting the need for a multi-faceted investigation. Disassembling prescriptions is a crucial approach for investigating compatibility mechanisms.

View Article and Find Full Text PDF

BRAF inhibitors (BRAFi) represent a cornerstone in melanoma therapy due to their high efficacy. However, the emergence of resistance causes a significant challenge to their clinical utility. This study aims to investigate the potential of diclofenac as a sensitizer for BRAFi therapy in melanoma and to elucidate its underlying mechanism.

View Article and Find Full Text PDF

Non-cell-autonomous regulation of mTORC2 by Hedgehog signaling maintains lipid homeostasis.

Cell Rep

January 2025

Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

Organisms allocate energetic resources between essential cellular processes to maintain homeostasis and, in turn, maximize fitness. The nutritional regulators of energy homeostasis have been studied in detail; however, how developmental signals might impinge on these pathways to govern metabolism is poorly understood. Here, we identify a non-canonical role for Hedgehog (Hh), a classic regulator of development, in maintaining intestinal lipid homeostasis in Caenorhabditis elegans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!