In this paper, a model of the harp plucking is developed. It is split into two successive time phases, the sticking and the slipping phases, and uses a mechanical description of the human finger's behavior. The parameters of the model are identified through measurements of the finger/string displacements during the interaction. The validity of the model is verified using a configurable and repeatable robotic finger, enhanced with a silicone layer. A parametric study is performed to investigate the influence of the model's parameters on the free oscillations of the string. As a result, a direct implementation of the model produces an accurate simulation of a string response to a given finger motion, as compared to experimental data. The set of parameters that govern the plucking action is divided into two groups: Parameters controlled by the harpist and parameters intrinsic to the plucking. The former group and to a lesser extent the latter highly influence the initial conditions of the string vibrations. The simulations of the string's free oscillations highlight the large impact the model parameters have on the sound produced and therefore allows the understanding of how different players on the same instrument can produce a specific/personal sound quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4792249 | DOI Listing |
Life Sci
January 2025
Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. Electronic address:
Aims: Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy (LVH) with key pathologic processes including myocardial necrosis, fibrosis, inflammation, and hypertrophy, which are involved in heart failure (HF), stroke, and even sudden death. Our aim was to explore the communication network among various cells in the heart of transverse aortic constriction (TAC) surgery induced HCM mice.
Materials And Methods: Single-cell RNA-seq data of GSE137167 was downloaded from the Gene Expression Omnibus (GEO) database.
Stem Cell Reports
December 2024
Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China. Electronic address:
Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease that results in motor, sensory, cognitive, and affective deficits. Hippocampal demyelination, a common occurrence in MS, is linked to impaired cognitive function and mood. Despite this, the precise mechanisms underlying cognitive impairments in MS remain elusive.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain. Electronic address:
Obesity and metabolic disorders, such as metabolic syndrome (MetS) facilitate the development of neurodegenerative diseases and cognitive decline. Persistent neuroinflammation plays an important role in this process. Pleiotrophin (PTN) is a cytokine that regulates energy metabolism and high-fat diet (HFD)-induced neuroinflammation, suggesting that PTN could play an important role in the connection between obesity and brain alterations, including cognitive decline.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Health and Pharmaceutical Sciences, Faculty of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain.
Alzheimer's disease (AD) is a major neurodegenerative disorder that courses with chronic neuroinflammation. Pleiotrophin (PTN) is an endogenous inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ which is upregulated in different neuroinflammatory disorders of diverse origin, including AD. To investigate the role of RPTPβ/ζ in neuroinflammation and neurodegeneration, we used eight-to ten-month-old APP/PS1 AD mouse model.
View Article and Find Full Text PDFInt J Surg
December 2024
Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!