Waldenstrom macroglobulinemia (WM) is a low-grade B-cell lymphoproliferative disorder characterized primarily by specific homing and growth of tumor cells within the bone marrow niches. The progressive growth of tumor cells throughout the bone marrow indicates that the tumor cells are capable of homing and adhering to specific niches that allow growth, survival and drug resistance. In this review we highlight the interaction of the tumor cells in WM and the bone marrow microenvironment including bone marrow stromal cells, endothelial cells and mast cells. Migration, adhesion and downstream activation of signaling pathways leads to cell trafficking and cell dissemination in WM. Future therapeutic agents need to target not only the tumor clone, but also its close interaction with the bone marrow microenvironment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573408PMC
http://dx.doi.org/10.1177/2040620711410096DOI Listing

Publication Analysis

Top Keywords

bone marrow
24
tumor cells
16
marrow microenvironment
12
cells bone
12
waldenstrom macroglobulinemia
8
growth tumor
8
cells
7
bone
6
tumor
5
marrow
5

Similar Publications

Knockdown of miR-182 changes the sensitivity of triple-negative breast cancer cells to cisplatin.

Nucleosides Nucleotides Nucleic Acids

January 2025

Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.

Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.

View Article and Find Full Text PDF

Background: Midfoot pain is common but poorly understood, with radiographs often indicating no anomalies. This study aimed to describe bone, joint and soft tissue changes and to explore associations between MRI-detected abnormalities and clinical symptoms (pain and disability) in a group of adults with midfoot pain, but who were radiographically negative for osteoarthritis.

Methods: Community-based participants with midfoot pain underwent an MRI scan of one foot and scored semi-quantitatively using the Foot OsteoArthritis MRI Score (FOAMRIS).

View Article and Find Full Text PDF

Evaluation of Cartilage-Like Matrix Formation in a Nucleus Pulposus-Derived Cartilage Analog Scaffold.

J Biomed Mater Res B Appl Biomater

January 2025

The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.

View Article and Find Full Text PDF

Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.

View Article and Find Full Text PDF

Background: Renal adverse drug reactions (ADRs) associated with tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML) are relatively rare, and there is currently no standardized protocol for their management. Therefore, this study aimed to summarize renal ADRs related to TKIs use in CML and propose an evidence-based approach to monitor and manage these ADRs.

Methods: A systematic literature review was performed to identify renal ADRs associated with TKIs in CML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!