Biochemical and genetic studies suggest that vertebrates remove double-strand breaks (DSBs) from their genomes predominantly by two non-homologous end joining (NHEJ) pathways. While canonical NHEJ depends on the well characterized activities of DNA-dependent protein kinase (DNA-PK) and LIG4/XRCC4/XLF complexes, the activities and the mechanisms of the alternative, backup NHEJ are less well characterized. Notably, the contribution of LIG1 to alternative NHEJ remains conjectural and although biochemical, cytogenetic and genetic experiments implicate LIG3, this contribution has not been formally demonstrated. Here, we take advantage of the powerful genetics of the DT40 chicken B-cell system to delineate the roles of LIG1 and LIG3 in alternative NHEJ. Our results expand the functions of LIG1 to alternative NHEJ and demonstrate a remarkable ability for LIG3 to backup DSB repair by NHEJ in addition to its essential function in the mitochondria. Together with results on DNA replication, these observations uncover a remarkable and previously unappreciated functional flexibility and interchangeability between LIG1 and LIG3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610672PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059505PLOS

Publication Analysis

Top Keywords

alternative nhej
12
well characterized
8
lig1 alternative
8
lig1 lig3
8
nhej
7
alternative
5
dna ligases
4
ligases iii
4
iii cooperate
4
cooperate alternative
4

Similar Publications

RecQ helicases, highly conserved proteins with pivotal roles in DNA replication, DNA repair and homologous recombination, are crucial for maintaining genomic integrity. Mutations in RECQL4 have been associated with various human diseases, including Rothmund-Thomson syndrome. RECQL4 is involved in regulating major DNA repair pathways, such as homologous recombination and nonhomologous end joining (NHEJ).

View Article and Find Full Text PDF

DNA-joining by ligase and polymerase enzymes has provided the foundational tools for generating recombinant DNA and enabled the assembly of gene and genome-sized synthetic products. Xenobiotic nucleic acid (XNA) analogues of DNA and RNA with alternatives to the canonical bases, so-called 'unnatural' nucleobase pairs (UBP-XNAs), represent the next frontier of nucleic acid technologies, with applications as novel therapeutics and in engineering semi-synthetic biological organisms. To realise the full potential of UBP-XNAs, researchers require a suite of compatible enzymes for processing nucleic acids on a par with those already available for manipulating canonical DNA.

View Article and Find Full Text PDF

Tay-Sachs disease is a fatal neurodegenerative disorder caused by mutations inactivating the metabolic enzyme HexA. The most common mutation is c.1278insTATC, a tandem 4-bp duplication disrupting expression by frameshift.

View Article and Find Full Text PDF

It is thought that cells surviving ionizing radiation exposure repair DNA double-strand breaks (DSBs) and restore their genomes. However, the recent biochemical and genetic characterization of DSB repair pathways reveals that only homologous recombination (HR) can function in an error-free manner and that the non-homologous end joining (NHEJ) pathways canonical NHEJ (c-NHEJ), alternative end joining (alt-EJ), and single-strand annealing (SSA) are error-prone, and potentially leave behind genomic scars and altered genomes. The strong cell cycle restriction of HR to S/G2 phases and the unparalleled efficiency of c-NHEJ throughout the cell cycle, raise the intriguing question as to how far a surviving cell "reaches" after repairing the genome back to its pre-irradiation state.

View Article and Find Full Text PDF

RPA and Rad27 limit templated and inverted insertions at DNA breaks.

Nucleic Acids Res

January 2025

Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030, USA.

Formation of templated insertions at DNA double-strand breaks (DSBs) is very common in cancer cells. The mechanisms and enzymes regulating these events are largely unknown. Here, we investigated templated insertions in yeast at DSBs using amplicon sequencing across a repaired locus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!