Fission yeast CSL proteins function as transcription factors.

PLoS One

Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.

Published: September 2013

Background: Transcription factors of the CSL (CBF1/RBP-Jk/Suppressor of Hairless/LAG-1) family are key regulators of metazoan development and function as the effector components of the Notch receptor signalling pathway implicated in various cell fate decisions. CSL proteins recognize specifically the GTG[G/A]AA sequence motif and several mutants compromised in their ability to bind DNA have been reported. In our previous studies we have identified a number of novel putative CSL family members in fungi, organisms lacking the Notch pathway. It is not clear whether these represent genuine CSL family members.

Methodology/principal Findings: Using a combination of in vitro and in vivo approaches we characterized the DNA binding properties of Cbf11 and Cbf12, the antagonistic CSL paralogs from the fission yeast, important for the proper coordination of cell cycle events and the regulation of cell adhesion. We have shown that a mutation of a conserved arginine residue abolishes DNA binding in both CSL paralogs, similar to the situation in mouse. We have also demonstrated the ability of Cbf11 and Cbf12 to activate gene expression in an autologous fission yeast reporter system.

Conclusions/significance: Our results indicate that the fission yeast CSL proteins are indeed genuine family members capable of functioning as transcription factors, and provide support for the ancient evolutionary origin of this important protein family.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598750PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059435PLOS

Publication Analysis

Top Keywords

fission yeast
16
csl proteins
12
transcription factors
12
csl
8
yeast csl
8
csl family
8
family members
8
dna binding
8
cbf11 cbf12
8
csl paralogs
8

Similar Publications

The pseudouridylase Pus1 catalyzes pseudouridine (Ψ) formation at multiple uridine residues in tRNAs, and in some snRNAs and mRNAs. Although Pus1 is highly conserved, and mutations are associated with human disease, little is known about eukaryotic Pus1 biology. Here, we show that Schizosaccharomyces pombe pus1Δ mutants are temperature sensitive due to decay of tRNAIle(UAU), as tRNAIle(UAU) levels are reduced, and its overexpression suppresses the defect.

View Article and Find Full Text PDF

In Vitro Formation of Actin Ring in the Fission Yeast Cell Extracts.

Cytoskeleton (Hoboken)

January 2025

Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan.

Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles.

View Article and Find Full Text PDF

Intron removal during pre-mRNA splicing is of extraordinary complexity and its disruption causes a vast number of genetic diseases in humans. While key steps of the canonical spliceosome cycle have been revealed by combined structure-function analyses, structural information on an aberrant spliceosome committed to premature disassembly is not available. Here, we report two cryo-electron microscopy structures of post-B spliceosome intermediates from Schizosaccharomyces pombe primed for disassembly.

View Article and Find Full Text PDF

Accurate gametogenesis requires the establishment of the telomere bouquet, an evolutionarily conserved, 3D chromosomal arrangement. In this spatial configuration, telomeres temporarily aggregate at the nuclear envelope during meiotic prophase, which facilitates chromosome pairing and recombination. The mechanisms governing the assembly of the telomere bouquet remain largely unexplored, primarily due to the challenges in visualizing and manipulating the bouquet.

View Article and Find Full Text PDF

The Munc13/UNC-13 family protein Ync13 is essential for septum integrity and cytokinesis in fission yeast. To further explore the mechanism of Ync13 functions, spontaneous suppressors of mutants, which can suppress the colony-formation defects and lysis phenotype of mutant cells, are isolated and characterized. One of the suppressor mutants, -, shows defects in the cytokinetic contractile ring constriction, septation, and daughter-cell separation, similar to mutant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!