Francisella tularensis (Ft) is a highly infectious intracellular pathogen and the causative agent of tularemia. Because Ft can be dispersed via small droplet-aerosols and has a very low infectious dose it is characterized as a category A Select Agent of biological warfare. Respiratory infection with the attenuated Live Vaccine Strain (LVS) and the highly virulent SchuS4 strain of Ft engenders intense peribronchiolar and perivascular inflammation, but fails to elicit select pro-inflammatory mediators (e.g., TNF, IL-1β, IL-6, IL-12, and IFN-γ) within the first ~72 h. This in vivo finding is discordant with the principally TH1-oriented response to Ft frequently observed in cell-based studies wherein the aforementioned cytokines are produced. An often overlooked confounding factor in the interpretation of experimental results is the influence of environmental cues on the bacterium's capacity to elicit certain host responses. Herein, we reveal that adaptation of Ft to its mammalian host imparts an inability to elicit select pro-inflammatory mediators throughout the course of infection. Furthermore, in vitro findings that non-host adapted Ft elicits such a response from host cells reflect aberrant recognition of the DNA of structurally-compromised bacteria by AIM2-dependent and -independent host cell cytosolic DNA sensors. Growth of Ft in Muller-Hinton Broth or on Muller-Hinton-based chocolate agar plates or genetic mutation of Ft was found to compromise the structural integrity of the bacterium thus rendering it capable of aberrantly eliciting pro-inflammatory mediators (e.g., TNF, IL-1β, IL-6, IL-12, and IFN-γ). Our studies highlight the profound impact of different growth conditions on host cell response to infection and demonstrate that not all in vitro-derived findings may be relevant to tularemia pathogenesis in the mammalian host. Rational development of a vaccine and immunotherapeutics can only proceed from a foundation of knowledge based upon in vitro findings that recapitulate those observed during natural infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595284 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058513 | PLOS |
J Appl Toxicol
December 2024
Division of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India.
Arsenic (As), a highly toxic metalloid, is present throughout our environment as a result of both natural and human-related activities. Furthermore, As exposure could lead to a persistent inflammatory response, which may facilitate the pathogenesis of several diseases in various organs. This study was performed to investigate the As-induced inflammatory response and the underlying molecular mechanisms in vitro.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Sea buckthorn is a model of medicine and food homology, but the chemical composition and mechanism of anti-inflammatory effects are limited. In this study, the key components and mechanisms of the anti-inflammatory effects of sea buckthorn were identified based on UPLC-Q-TOF-MS, network pharmacology, molecular docking, molecular dynamics and RAW264.7 cells.
View Article and Find Full Text PDFParasitol Res
January 2025
Department of Parasitology, Chung Shan Medical University, Taichung, 402, Taiwan.
Prostaglandin E2 (PGE-2) is synthesised by cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). PGE-2 exhibits pro-inflammatory properties in inflammatory conditions. However, there remains limited understanding of the COX-2/mPGES-1/PGE-2 pathway in Angiostrongylus cantonensis-induced meningoencephalitis.
View Article and Find Full Text PDFFood Funct
January 2025
Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, P.R. China.
This study investigated the effect of oleogel consumption on lipid metabolism, gut microbiota and low-grade inflammation in rats fed with a high-fat diet. Male SD rats received either a control diet or high-fat diets for six weeks. The high-fat diets included a regular high-fat diet and high-fat diets in which lard was replaced with pure sunflower oil, un-gelled sunflower oil containing a dispersed gelator, or gelled sunflower oil with the gelator (oleogel).
View Article and Find Full Text PDFIran J Pharm Res
September 2024
Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Background: Dry eye disease (DED) is a multifactorial condition characterized by ocular surface inflammation, tear film instability, and corneal epithelial damage. Current treatments often provide temporary relief without addressing the underlying inflammatory mechanisms.
Objectives: This study examined the therapeutic potential of crocin and nobiletin, two naturally derived compounds with well-known antioxidant and anti-inflammatory properties, in a mouse model of DED induced by lacrimal gland excision (LGE).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!