Background: Porphyromonas gingivalis is a major pathogen of periodontal disease that affects a majority of adults worldwide. Increasing evidence shows that periodontal disease is linked to various systemic diseases like diabetes and cardiovascular disease, by contributing to increased systemic levels of inflammation. Lipopolysaccharides (LPS), as a key virulent attribute of P. gingivalis, possesses significant amount of lipid A heterogeneity containing tetra- (LPS1435/1449) and penta-acylated (LPS1690) structures. Hitherto, the exact molecular mechanism of P. gingivalis LPS involved in periodontal pathogenesis remains unclear, due to limited understanding of the specific receptors and signaling pathways involved in LPS-host cell interactions.

Methodology/principal Findings: This study systematically investigated the effects of P. gingivalis LPS1435/1449 and LPS1690 on the expression of TLR2 and TLR4 signal transduction and the activation of pro-inflammatory cytokines IL-6 and IL-8 in human gingival fibroblasts (HGFs). We found that LPS1435/1449 and LPS1690 differentially modulated TLR2 and TLR4 expression. NF-κB pathway was significantly activated by LPS1690 but not by LPS1435/1449. In addition, LPS1690 induced significant expression of NF-κB and p38 MPAK pathways-related genes, such as NFKBIA, NFKB1, IKBKB, MAP2K4 and MAPK8. Notably, the pro-inflammatory genes including GM-CSF, CXCL10, G-CSF, IL-6, IL-8 and CCL2 were significantly upregulated by LPS1690 while down-regulated by LPS1435/1449. Blocking assays confirmed that TLR4-mediated NF-κB signaling was vital in LPS1690-induced expression of IL-6 and IL-8 in HGFs.

Conclusions/significance: The present study suggests that the tetra- and penta-acylated lipid A structures of P. gingivalis LPS differentially activate TLR4-mediated NF-κB signaling pathway, and significantly modulate the expression of IL-6 and IL-8 in HGFs. The ability to alter the lipid A structure of LPS could be one of the strategies carried-out by P. gingivalis to evade innate host defense in gingival tissues, thereby contributing to periodontal pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595299PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058496PLOS

Publication Analysis

Top Keywords

il-6 il-8
16
gingivalis lps
12
tlr4-mediated nf-κb
12
tetra- penta-acylated
8
penta-acylated lipid
8
lipid structures
8
porphyromonas gingivalis
8
lps differentially
8
differentially activate
8
activate tlr4-mediated
8

Similar Publications

Background: Except host and environmental factors influencing individual human cytokine responses, pre-analytical handling procedures and detection methods also affect cytokine levels.

Methods: In this study, we used cytometric bead array (CBA) and chemiluminescence (ECL). These two methods were used to test serum and plasma samples from 50 healthy adult volunteers and 50 rheumatoid arthritis (RA) patients' cytokine levels.

View Article and Find Full Text PDF

Anaplastic thyroid cancer (ATC) is a lethal endocrine malignancy. It has been shown that tumor-associated macrophages (TAMs) contribute to the aggressiveness of ATC. However, stimulatory factors that could facilitate the induction and infiltration of TAMs in the ATC tumor microenvironment (TME) are not fully elucidated.

View Article and Find Full Text PDF

High BMP7 Expression May Worsen Airway Disease in COPD by Altering Epithelial Cell Behavior.

Int J Chron Obstruct Pulmon Dis

January 2025

Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.

Purpose: Airway disease is the main pathological basis of chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are unknown. Bone morphogenetic protein-7 (BMP7) is a multi-functional growth factor that belongs to the transforming growth factor superfamily, which affects the regulation of proliferation, differentiation, and apoptosis. Previous research has shown that BMP7 is highly expressed in the airway epithelia of patients with COPD, but its role in airway disease has not been fully elucidated.

View Article and Find Full Text PDF

The advent of bioprinting has enabled the creation of precise three-dimensional (3D) cell cultures suitable for biomimetic in vitro models. In this study, we developed a novel protocol for 3D printing methacrylated collagen (ColMa, or PhotoCol®) combined with tendon stem/progenitor cells (hTSPCs) derived from human tendon explants. Although pure ColMa has not previously been proposed as a printable hydrogel, this paper outlines a robust and highly reproducible pipeline for bioprinting this material.

View Article and Find Full Text PDF

This study describes a complex human in vitro model for evaluating anti-inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre-clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co-cultured with macrophages differentiated from the THP-1 cell line, creating a physiological biological microenvironment. To mimic the three-dimensional architecture and dynamic expansion and relaxation of the air-blood-barrier, they are grown on a stretchable microphysiological lung-on-chip.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!