Chromosome copy number aberrations, anueploidies, are common in the human population but generally lethal. However, trisomy of human chromosome 21 is compatible with life and people born with this form of aneuploidy manifest the features of Down syndrome, named after Langdon Down who was a 19(th) century British physician who first described a group of people with this disorder. Down syndrome includes learning and memory deficits in all cases, as well as many other features which vary in penetrance and expressivity in different people. While Down syndrome clearly has a genetic cause - the extra dose of genes on chromosome 21 - we do not know which genes are important for which aspects of the syndrome, which biochemical pathways are disrupted, or, generally how design therapies to ameliorate the effects of these disruptions. Recently, with new insights gained from studying mouse models of Down syndrome, specific genes and pathways are being shown to be involved in the pathogenesis of the disorder. This is opening the way for exciting new studies of potential therapeutics for aspects of Down syndrome, particularly the learning and memory deficits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596542PMC
http://dx.doi.org/10.1016/S1674-8301(10)60016-4DOI Listing

Publication Analysis

Top Keywords

trisomy human
8
human chromosome
8
learning memory
8
memory deficits
8
aspects syndrome
8
syndrome
7
syndrome molecular
4
molecular pathogenesis
4
pathogenesis trisomy
4
chromosome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!