Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: Aberrant vascular smooth muscle cell (VSMC) proliferation and migration contribute significantly to the development of vascular pathologies, such as atherosclerosis and restenosis. MicroRNAs have recently emerged as critical modulators in cellular processes and the purpose of this study is to identify novel miRNA regulators implicated in human aortic VSMC proliferation and migration.
Methods And Results: To identify miRNAs that are differentially expressed in human VSMCs, we performed miRNA microarray analysis in human aortic smooth muscle cells (SMCs) at different time points after platelet-derived growth factor (PDGF) stimulation. Here, we identified microRNA-638 (miR-638) as a transcript that was one of the most significantly down-regulated in human VSMCs after PDGF stimulation. Furthermore, we confirmed, by Quantitative RT-PCR, that miR-638 is highly expressed in human VSMCs, and its expression is markedly down-regulated in a dose- and time-dependent manner upon PDGF treatment. Consistent with a critical role in SMC proliferation, we found that miR-638 expression was significantly up-regulated in human VSMCs cultured in differentiation medium, a condition that inhibits SMC proliferation. Furthermore, we identified the orphan nuclear receptor NOR1 as a downstream target gene product of miR-638 and down-regulation of NOR1 is critical for miR-638-mediated inhibitory effects on PDGF-induced cyclin D1 expression, cell proliferation, and migration in human aortic SMCs.
Conclusion: These results indicate that miR-638 is a key molecule in regulating human VSMC proliferation and migration by targeting the NOR1/cyclin D pathway and suggest that specific modulation of miR-638 in human VSMCs may represent an attractive approach for the treatment of proliferative vascular diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3687750 | PMC |
http://dx.doi.org/10.1093/cvr/cvt082 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!