The generation of activity in the central nervous system requires precise tuning of cellular properties and synaptic transmission. Neural networks in the spinal cord produce coordinated locomotor movements. Synapses in these networks need to be equipped with multiple mechanisms that regulate their operation over varying regimes to produce locomotor activity at different frequencies. Using the in vitro lamprey spinal cord, we explored whether Ca(2+) influx via different routes in postsynaptic soma and dendrites and in presynaptic terminals can activate apamin-sensitive Ca(2+)-activated K(+) (SK) channels and thereby shape synaptic transmission. We show that postsynaptic SK channels are tightly coupled to Ca(2+) influx via NMDA receptors. Activation of these channels by synaptically induced NMDA-dependent Ca(2+) transients restrains the time course of the synaptic current and the amplitude of the synaptic potential. In addition, presynaptic SK channels are activated by Ca(2+) influx via voltage-gated channels and control the waveform of the action potential and the resulting Ca(2+) dynamics in the axon terminals. The coupling of SK channels to different Ca(2+) sources, pre- and postsynaptically, acts as a negative feedback mechanism to shape synaptic transmission. Thus SK channels can play a pivotal role in setting the dynamic range of synapses and enabling short-term plasticity in the spinal locomotor network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680813PMC
http://dx.doi.org/10.1152/jn.00067.2013DOI Listing

Publication Analysis

Top Keywords

synaptic transmission
16
ca2+ influx
12
channels
8
postsynaptic channels
8
spinal locomotor
8
locomotor network
8
spinal cord
8
shape synaptic
8
synaptic
6
ca2+
6

Similar Publications

Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions.

View Article and Find Full Text PDF

ATAD1 Regulates Neuronal Development and Synapse Formation Through Tuning Mitochondrial Function.

Int J Mol Sci

December 2024

Hefei National Laboratory for Physical Sciences at the Microscale, MOE Key Laboratory for Membrane-Less Organelles & Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.

Mitochondrial function is essential for synaptic function. ATAD1, an AAA+ protease involved in mitochondrial quality control, governs fission-fusion dynamics within the organelle. However, the distribution and functional role of ATAD1 in neurons remain poorly understood.

View Article and Find Full Text PDF

Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.

View Article and Find Full Text PDF

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Maladaptive changes in the homeostasis of AEA-TRPV1/CB1R induces pain-related hyperactivity of nociceptors after spinal cord injury.

Cell Biosci

January 2025

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200438, People's Republic of China.

Background: Neuropathic pain resulting from spinal cord injury (SCI) is associated with persistent hyperactivity of primary nociceptors. Anandamide (AEA) has been reported to modulate neuronal excitability and synaptic transmission through activation of cannabinoid type-1 receptors (CB1Rs) and transient receptor potential vanilloid 1 (TRPV1). However, the role of AEA and these receptors in the hyperactivity of nociceptors after SCI remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!