Interdigitated multicolored bioink micropatterns by multiplexed polymer pen lithography.

Small

Institute of Nanotechnology (INT) and Karlsruhe, Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Germany; Physical Institute and Center for Nanotechnology (CeNTech), University of Münster, Germany.

Published: October 2013

Multiplexing, i.e., the application and integration of more than one ink in an interdigitated microscale pattern, is still a challenge for microcontact printing (μCP) and similar techniques. On the other hand there is a strong demand for interdigitated patterns of more than one protein on subcellular to cellular length scales in the lower micrometer range in biological experiments. Here, a new integrative approach is presented for the fabrication of bioactive microarrays and complex multi-ink patterns by polymer pen lithography (PPL). By taking advantage of the strength of microcontact printing (μCP) combined with the spatial control and capability of precise repetition of PPL in an innovative way, a new inking and writing strategy is introduced for PPL that enables true multiplexing within each repetitive subpattern. Furthermore, a specific ink/substrate platform is demonstrated that can be used to immobilize functional proteins and other bioactive compounds over a biotin-streptavidin approach. This patterning strategy aims specifically at application by cell biologists and biochemists addressing a wide range of relevant pattern sizes, easy pattern generation and adjustment, the use of only biofriendly, nontoxic chemicals, and mild processing conditions during the patterning steps. The retained bioactivity of the fabricated cm(2) area filling multiprotein patterns is demonstrated by showing the interaction of fibroblasts and neurons with multiplexed structures of fibronectin and laminin or laminin and ephrin, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.201203183DOI Listing

Publication Analysis

Top Keywords

polymer pen
8
pen lithography
8
microcontact printing
8
printing μcp
8
interdigitated multicolored
4
multicolored bioink
4
bioink micropatterns
4
micropatterns multiplexed
4
multiplexed polymer
4
lithography multiplexing
4

Similar Publications

Enhancement of Transdermal Drug Delivery: Integrating Microneedles with Biodegradable Microparticles.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, Georgia 30341, United States.

This investigation aimed to enhance transdermal methotrexate delivery through human skin by employing Dr. Pen microneedles and poly(d,l-lactide--glycolide) acid microparticles formulated from eight polymer grades (Expansorb DLG 95-4A, DLG 75-5A, DLG 50-2A, DLG 50-5A, DLG 50-8A, DLG 50-6P, DLG 50-7P, and DLL 10-15A). A comprehensive characterization of the microparticles was performed, encompassing various parameters such as size, charge, morphology, microencapsulation efficiency, yield, release kinetics, and chemical composition.

View Article and Find Full Text PDF

Ice-Confined Synthesis of Stacked Polymer Nanospheres as Osmotic Power Generation Membranes.

Nano Lett

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Osmotic power extracts electricity from salinity gradients and provides a viable route toward clean energy. To improve the energy conversion efficiency, common strategies rely on fabricating precisely controlled nanopores to meet the requirements of high ionic conductivity and selectivity. We report ion transport through the free-volume networks in stacked polymer nanospheres for osmotic power harvesting.

View Article and Find Full Text PDF

We have executed a cost-effective approach to produce a high-performance multifunctional human-machine interface (HMI) humidity sensor. The designed sensors were ecofriendly, flexible, and highly sensitive to variability in relative humidity (%RH) in the surroundings. In this study, we have introduced a humidity sensor by using carbon paper (as both a substrate and sensing material) and a silver (Ag) conductive ink pen.

View Article and Find Full Text PDF

Addressing the high cost and long cycle associated with the multistep digital restoration process involving 3D printing technology, we proposed the 3D pen as an innovative strategy for rapid bone repair. Capitalizing on the low melting point characteristic of polycaprolactone (PCL), we introduced, for the first time, the novel concept of directly constructing scaffolds at bone defect sites using 3D pens. In this in vitro study, we meticulously evaluated both the mechanical and biological properties of 3D pen-printed PCL scaffolds with six distinct textures: unidirectional (UNI) (0°, 45°, 90°), bidirectional (BID) (-45°/45°, 0°/90°), and concentric (CON).

View Article and Find Full Text PDF

Multi-Functional Semiconductor Polymer Doped Wide Bandgap Layer for All-Perovskite Solar Cells with High Efficiency and Long Durability.

Small

December 2024

Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China.

The study presents a multi-functional and semiconductor polymer poly[bis(3-hexylthiophen-2-yl)thieno[3,4-c]pyrrole-4,6-dione] (PBDTTPD) doping strategy that significantly enhanced the performance of the two-terminal all-perovskite tandem perovskite solar cells (T-PSCs). An optimized power conversion efficiency (PCE) of 26.87% has been achieved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!