A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bone stiffness and failure load are related with clinical parameters in men with chronic obstructive pulmonary disease. | LitMetric

Osteoporosis is frequently seen in patients with chronic obstructive pulmonary disease (COPD). Because research on bone structure and bone strength in COPD patients is limited, the objectives of this pilot study were as follows: (1) to compare bone structure, stiffness, and failure load, measured at the peripheral skeleton, between men with and without COPD after stratification for areal bone mineral density (aBMD); and (2) to relate clinical parameters with bone stiffness and failure load in men with COPD. We included 30 men with COPD (normal aBMD, n = 18; osteoporosis, n = 12) and 17 men without COPD (normal aBMD, n = 9; osteoporosis, n = 8). We assessed pack-years of smoking, body mass index (BMI), fat free mass index (FFMI), pulmonary function (forced expiratory volume in 1 second [FEV1 ], FEV1 /forced vital capacity [FVC], diffusion capacity for carbon monoxide [DLCO], and transfer coefficient for carbon monoxide [KCO]), and extent of emphysema. Bone structure of the distal radius and tibia was assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT), and bone stiffness and failure load of the distal radius and tibia were estimated from micro finite element analysis (µFEA). After stratification for aBMD and COPD, men with osteoporosis showed abnormal bone structure (p < 0.01), lower bone stiffness (p < 0.01), and lower failure load (p < 0.01) compared with men with normal aBMD, and men with COPD had comparable bone structure, stiffness, and failure load compared with men without COPD. In men with COPD, lower FFMI was related with lower bone stiffness, and failure load of the radius and tibia and lower DLCO and KCO were related with lower bone stiffness and failure load of the tibia after normalization with respect to femoral neck aBMD. Thus, this pilot study could not detect differences in bone structure, stiffness, and failure load between men with and without COPD after stratification for aBMD. FFMI and gas transfer capacity of the lung were significantly related with bone stiffness and failure load in men with COPD after normalization with respect to femoral neck aBMD.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.1947DOI Listing

Publication Analysis

Top Keywords

stiffness failure
16
failure load
16
bone structure
16
men copd
16
bone stiffness
12
bone
9
clinical parameters
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!