α-Synuclein in CSF of patients with severe traumatic brain injury.

Neurology

Clinical Department, Banyan Biomarkers, Inc., Alachua, FL, USA.

Published: April 2013

Objective: The study aims to examine α-synuclein in the CSF of patients with severe traumatic brain injury (TBI) and its relationship with clinical characteristics and long-term outcomes.

Methods: This prospective case-control study enrolled patients with severe TBI (Glasgow Coma Score ≤ 8) who underwent ventriculostomy. CSF samples were taken from each TBI patient at admission and daily for up to 8 days after injury and successively assessed by ELISA. Control CSF was collected for analysis from subjects receiving lumbar puncture for other medical reasons. We used trajectory analysis to identify distinct temporal profiles of CSF α-synuclein that were compared with clinical outcomes.

Results: CSF α-synuclein was elevated in TBI patients after injury as compared to controls (p = 0.0008). Overall, patients who died had higher concentrations (area under the curve) over 8 days of observation compared to those who survived at 6 months postinjury (p = 0.002). Two distinct temporal α-synuclein profiles were recognized over time. Subjects who died had consistently elevated α-synuclein levels compared to those who survived with α-synuclein levels near controls. High-risk trajectory was a strong and accurate predictor of death with 100% specificity and a very high sensitivity (83%).

Conclusions: Taken together, these data support the hypothesis that in severe TBI patients, substantial increase of CSF α-synuclein may indicate widespread neurodegeneration and reflect secondary neuropathologic events occurring after injury. The determination of CSF α-synuclein may be a valuable prognostic marker, adding to the clinical assessment and creating opportunities for medical intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0b013e3182904d43DOI Listing

Publication Analysis

Top Keywords

csf α-synuclein
16
patients severe
12
α-synuclein
9
α-synuclein csf
8
csf patients
8
severe traumatic
8
traumatic brain
8
brain injury
8
severe tbi
8
distinct temporal
8

Similar Publications

Cerebrospinal fluid dynamics and subarachnoid space occlusion following traumatic spinal cord injury in the pig: an investigation using magnetic resonance imaging.

Fluids Barriers CNS

January 2025

Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia.

Background: Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.

View Article and Find Full Text PDF

B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals.

View Article and Find Full Text PDF

Background: Iduronate-2-sulfatase (IDS) deficiency (MPS II; Hunter syndrome) is a disorder that exhibits peripheral and CNS pathology. The blood brain barrier (BBB) prevents systemic enzyme replacement therapy (ERT) from alleviating CNS pathology. We aimed to enable brain delivery of systemic ERT by using molecular BBB-Trojans targeting endothelial transcytosis receptors.

View Article and Find Full Text PDF

Background: Non-human primates (NPHs), such as rhesus macaques, cynomolgus monkeys, and Assamese macaques, play a crucial role in biomedical research. However, baseline cytokine and electrolyte data for these three species, particularly data stratified by age and sex, are limited. Therefore, the aim of this study was to establish and analyze age- and sex-specific cytokine and electrolyte profiles in these three species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!