The introduction of Reduced height (Rht)-B1b and Rht-D1b into bread wheat (Triticum aestivum) varieties was a key component of the 'green revolution' and today these alleles are the primary sources of semi-dwarfism in wheat. The Rht-1 loci encode DELLA proteins, which are transcription factors that affect plant growth and stress tolerance. In bread wheat, Rht-D1b and Rht-B1b influence resistance to the disease Fusarium Head Blight. To identify Rht-1 variants, locus specific primers were developed and used to sequence the entire open reading frame (ORF) and 1.7 kb of the 5' and 0.5 kb of the 3' flanking regions of Rht-A1 (Rht-A1+f), Rht-B1 (Rht-B1+f), and Rht-D1 (Rht-D1+f) in bread wheat (36 sequences from each genome) and tetraploid and diploid wheat (TDW) (one to three sequences from each genome). Among the bread wheat accessions, the Rht-A1+f and Rht-D1+f sequences contained relatively low genetic diversity and few haplotypes relative to the Rht-B1+f sequences. The TDW accessions were relatively rich in genetic diversity and contained the majority of the polymorphic sites. Novel polymorphisms, relative to 'Chinese Spring', discovered among the accessions include 160 and 197 bp insertions 5' of Rht-B1 and a frameshift in the Rht-B1 ORF. Quantitative real-time PCR using shoot and leaf tissue from 5-day-old seedlings of genotypes lacking or containing the 5' insertions revealed no major effect on Rht-B1 transcript accumulation. This research provides insights into the genetic diversity present at the Rht-1 loci in modern bread wheat and in relation to ancestral wheat accessions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-013-2088-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!