Computational design of S-nitrosothiol "click" reactions.

J Comput Chem

Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, USA.

Published: July 2013

To address a long-standing problem of finding efficient reactions for chemical labeling of protein-based S-nitrosothiols (RSNOs), we computationally explored hitherto unknown (3+2) cycloaddition RSNO reactions with alkynes and alkenes. Nonactivated RSNO cycloaddition reactions have high activation enthalpy (>20 kcal/mol at the CBS-QB3 level) and compete with alternative S-N bond insertion pathway. However, the (3+2) cycloaddition reaction barriers can be dramatically lowered by coordination of a Lewis acid to the N atom of the -SNO group. To exploit this effect, we propose to use reagents with Lewis acid and a strain-activated carbon-carbon multiple bond linked by a rigid scaffold, which can react with RSNOs with small activation enthalpies (∼5 kcal/mol) and high reaction exothermicities (∼40 kcal/mol). The proposed efficient RSNO cycloaddition reactions can be used for future development of practical RSNO labeling reactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.23279DOI Listing

Publication Analysis

Top Keywords

3+2 cycloaddition
8
rsno cycloaddition
8
cycloaddition reactions
8
lewis acid
8
reactions
6
computational design
4
design s-nitrosothiol
4
s-nitrosothiol "click"
4
"click" reactions
4
reactions address
4

Similar Publications

KOBu-Promoted [3 + 2] Cycloaddition of Dimethyl Sulfoxide with Fullerenes.

Org Lett

January 2025

State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China.

KOBu-promoted [3 + 2] cycloaddition of dimethyl sulfoxide (DMSO) with fullerenes has been developed for facile and efficient one-pot synthesis of 1,2,3,4-cyclic sulfoxide-fused [60]/[70]fullerene dihydrides, which offers a versatile platform for the site-selective preparation of various fullerene multiadducts with a wide range of functional groups. The utility of these tetra-functionalized fullerenes is demonstrated by the successful application as electron-transport materials in perovskite solar cells.

View Article and Find Full Text PDF

Catalytic asymmetric photocycloaddition reactions mediated by enantioselective radical approaches.

Chem Soc Rev

January 2025

Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, P. R. China.

The use of olefins in the construction of cyclic compounds represents a powerful strategy for advancing the pharmaceutical industry. Photocycloaddition has attracted significant interest from chemists due to its ability to exploit simple and readily available olefins along with their reaction patterns under mild conditions. Moreover, the sustainable and versatile pathways for generating highly reactive intermediates can greatly enrich both substrate diversity and reaction patterns.

View Article and Find Full Text PDF

The objective of the study was to synthesize tetrazole molecules featuring nitro groups positioned at the para and meta locations. We aimed to assess their effectiveness in inhibiting corrosion of mild steel in a 1 M HCl solution at 298 K. Tetrazoles with 2,5-disubstitution were created using [3 + 2] cycloaddition and N-alkylation techniques, with a particular emphasis on synthesizing molecules that contain nitro groups.

View Article and Find Full Text PDF

Synthesis of Benzazepines Bearing Three Contiguous Carbon Stereocenters through Pd(II)-Catalyzed [3 + 2] Cycloaddition of -Aryl Nitrones with Allenoates.

J Org Chem

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.

A cascade reaction of Pd(II)/dppben-catalyzed [3 + 2] cycloaddition of -aryl nitrones with allenoates and sequential reduction has been developed for the synthesis of functionalized benzazepines bearing three contiguous carbon stereocenters in moderate to good yields ranging from 15 to 82% and high diastereoselectivity. The obtained benzazepines could be converted into various benzazepine scaffolds, and an estrone-derived benzazepine scaffold was prepared over four steps from estrone. More importantly, chiral benzazepine bearing three contiguous carbon stereocenters could be obtained in 88% ee value with chiral auxiliary.

View Article and Find Full Text PDF

Benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles are well known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free selective synthesis has always remained challenging as no comprehensive simple protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles in high to excellent yields with chemo-/regioselectivity from the library of benzothiazole/benzoxazole-ketones and aryl/alkyl-azides through an enolate-mediated organocatalytic azide-ketone [3 + 2]-cycloaddition under ambient conditions in a few hours. The commercial availability or quick synthesis of the starting materials and catalysts, a diverse substrate scope, chemo-/regioselectivity, quick synthesis of pharmaceutically active known compounds and their analogues, and numerous medicinal applications of functionalized benzothiazole/benzoxazole-triazoles are the key attractions of this metal-free organo-click reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!