AI Article Synopsis

  • - The study aimed to effectively create and validate a three-dimensional finite element model of the unilateral cleft lip and palate (UCLP) craniomaxillary complex, facilitating future analyses using this method.
  • - A CT scan of a 9-year-old boy with a left complete lip and palate cleft was used to generate a detailed 3D anatomical model, integrating 12 circum-maxillary sutures and achieving a highly accurate simulation with over 206,000 elements.
  • - The resulting model demonstrated improved accuracy over previous finite element analysis models and was validated by comparing the displacement and stress distribution of craniofacial structures to existing literature.

Article Abstract

Purpose: To explore an effective method to construct and validate a finite element model of the unilateral cleft lip and palate(UCLP) craniomaxillary complex with sutures, which could be applied in further three-dimensional finite element analysis (FEA).

Methods: One male patient aged 9 with left complete lip and palate cleft was selected and CT scan was taken at 0.75mm intervals on the skull. The CT data was saved in Dicom format, which was, afterwards, imported into Software Mimics 10.0 to generate a three-dimensional anatomic model. Then Software Geomagic Studio 12.0 was used to match, smoothen and transfer the anatomic model into a CAD model with NURBS patches. Then, 12 circum-maxillary sutures were integrated into the CAD model by Solidworks (2011 version). Finally meshing by E-feature Biomedical Modeler was done and a three-dimensional finite element model with sutures was obtained. A maxillary protraction force (500 g per side, 20° downward and forward from the occlusal plane) was applied. Displacement and stress distribution of some important craniofacial structures were measured and compared with the results of related researches in the literature.

Results: A three-dimensional finite element model of UCLP craniomaxillary complex with 12 sutures was established from the CT scan data. This simulation model consisted of 206 753 individual elements with 260 662 nodes, which was a more precise simulation and a better representation of human craniomaxillary complex than the formerly available FEA models. By comparison, this model was proved to be valid.

Conclusions: It is an effective way to establish the three-dimensional finite element model of UCLP cranio-maxillary complex with sutures from CT images with the help of the following softwares: Mimics 10.0, Geomagic Studio 12.0, Solidworks and E-feature Biomedical Modeler.

Download full-text PDF

Source

Publication Analysis

Top Keywords

finite element
24
three-dimensional finite
20
element model
20
complex sutures
16
craniomaxillary complex
12
model
11
cranio-maxillary complex
8
unilateral cleft
8
cleft lip
8
lip palate
8

Similar Publications

This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis (FEA) were employed to analyze the magnetic circuit coupling phenomena and their effects on the magnetic flux density distribution for each configuration. Subsequently, the air gap flux density and electromagnetic force were quantified under rotor eccentricity caused by unbalanced disturbances, and the dynamic performances of the ARMBs were evaluated for eccentricity along the x-axis and at 45°.

View Article and Find Full Text PDF

Ultra-High Sensitivity Methane Gas Sensor Based on Cryptophane-A Thin Film Depositing in Double D-Shaped Photonic Crystal Fiber Using the Vernier Effect.

Sensors (Basel)

December 2024

State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.

Methane gas leakage can lead to pollution problems, such as rising ambient temperature. In this paper, the Vernier effect of a double D-shaped photonic crystal fiber (PCF) in a Sagnac interferometer (SI) is proposed for the accurate detection of mixed methane gas content in the gas. The optical fiber structure of the effective sensing in the sensing SI loop and the effective sensing in the reference SI loop are the same.

View Article and Find Full Text PDF

In this study, a method for determining the optimal location and orientation of an implantable piezoelectric accelerometer on the short process of the incus is presented. The accelerometer is intended to be used as a replacement for an external microphone to enable totally implantable auditory prostheses. The optimal orientation of the sensor and the best attachment point are determined based on two criteria-maximum pressure sensitivity sum and minimum loudness level sum.

View Article and Find Full Text PDF

Implementation of Principal Component Analysis (PCA)/Singular Value Decomposition (SVD) and Neural Networks in Constructing a Reduced-Order Model for Virtual Sensing of Mechanical Stress.

Sensors (Basel)

December 2024

Fundación Centro Tecnológico CTC-Scientific and Technological Park of Cantabria (PCTCAN), Street Isabel Torres Nº 1, 39011 Santander, Spain.

This study presents the design and validation of a numerical method based on an AI-driven ROM framework for implementing stress virtual sensing. By leveraging Reduced-Order Models (ROMs), the research aims to develop a virtual stress transducer capable of the real-time monitoring of mechanical stresses in mechanical components previously analyzed with high-resolution FEM simulations under a wide range of multiple load scenarios. The ROM is constructed through neural networks trained on Finite Element Method (FEM) outputs from multiple scenarios, resulting in a simplified yet highly accurate model that can be easily implemented digitally.

View Article and Find Full Text PDF

Fixed-point thickness measurement is commonly used in corrosion detection within petrochemical enterprises, but it suffers from low detection efficiency for localized thinning, limitations regarding measurement locations, and high equipment costs due to insulation and cooling layers. To address these challenges, this paper introduces a wireless passive ultrasonic thickness measurement technique based on a pulse compression algorithm. The research methodology encompassed the development of mathematical and circuit models for single coil and wireless energy transmission, the proposal of a three-terminal wireless energy mutual coupling system, and the establishment of a finite element model simulating the ultrasonic body wave thickness measurement and wireless energy transmission system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!