Laser speckle perfusion imaging (LSPI) has become an increasingly popular technique for monitoring vascular perfusion over a tissue surface. However, few studies have utilized the full range of spatial and temporal information generated by LSPI to monitor spatial properties of physiologically relevant dynamics. In this study, we extend the use of LSPI to analyze renal perfusion dynamics over a spatial surface of ~5 × 7 mm of renal cortex. We identify frequencies related to five physiological systems that induce temporal changes in renal vascular perfusion (cardiac flow pulse, respiratory-induced oscillations, baroreflex components, the myogenic response, and tubuloglomerular feedback) across the imaged surface and compare the results with those obtained from renal blood flow measurements. We find that dynamics supplied from global sources (cardiac, respiration, and baroreflex) present with the same frequency at all locations across the imaged surface, but the local renal autoregulation dynamics can be heterogeneous in their distribution across the surface. Moreover, transfer function analysis with forced blood pressure as the input yields the same information with laser speckle imaging or renal blood flow as the output during control, intrarenal infusion of N(ω)-nitro-L-arginine methyl ester to enhance renal autoregulation, and intrarenal infusion of the rho-kinase inhibitor Y-27632 to inhibit vasomotion. We conclude that LSPI measurements can be used to analyze local as well as global renal perfusion dynamics and to study the properties of physiological systems across the renal cortex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00002.2013 | DOI Listing |
Microbiol Resour Announc
December 2024
Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan.
We report the complete genome sequences of two antimony-oxidizing bacteria, sp. strain ANAO-SY3R2, comprising one chromosome (4.3 Mbp) and four circular plasmids, and sp.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
Rheumatoid arthritis (RA) remains a challenging autoimmune disease due to its complex and heterogeneous pathophysiology, which complicates therapeutic and diagnostic efforts. Advances in DNA nanotechnology have introduced DNA nanomaterials as promising tools to overcome these barriers. This review focuses on three primary categories of DNA nanomaterials applied in RA: DNA nanostructures, DNA aptamers, and DNA-modified nanoparticles.
View Article and Find Full Text PDFJ Cell Biochem
January 2025
Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
Cellular prion protein (PRNP) has been implicated in various physiological processes in different cell types, for decades. Little has been known how PRNP functions in multiple, yet related processes within a particular system. In our current study, with the aid of high-throughput RNA-sequencing technique, we have presented an overall transcriptome profile of rat vascular smooth muscle cells (VSMCs) with Prnp knockdown.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Integrated stretchable devices, containing soft modules, rigid modules, and encapsulation modules, are of potential use in implantable bioelectronics and wearable devices. However, such systems often suffer from electrical deterioration due to debonding failure at the connection between rigid and soft modules induced by severe stress concentration, limiting their practical implementation. Here, we report a highly conductive and adhesive bilayer interface that can reliably connect soft-soft modules and soft-rigid modules together by simply pressing without conductive pastes.
View Article and Find Full Text PDFFront Physiol
December 2024
NextGen Precision Health, University of Missouri, Columbia, MO, United States.
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!