Molecular dynamics simulations for the motion of evaporative droplets driven by thermal gradients along nanochannels.

J Phys Condens Matter

School of Mathematical Sciences, Xiamen University, Xiamen 361005, People's Republic of China.

Published: May 2013

For a one-component fluid on a solid substrate, a thermal singularity may occur at the contact line where the liquid-vapor interface intersects the solid surface. Physically, the liquid-vapor interface is almost isothermal at the liquid-vapor coexistence temperature in one-component fluids while the solid surface is almost isothermal for solids of high thermal conductivity. Therefore, a temperature discontinuity is formed if the two isothermal interfaces are of different temperatures and intersect at the contact line. This leads to the so-called thermal singularity. The localized hydrodynamics involving evaporation/condensation near the contact line leads to a contact angle depending on the underlying substrate temperature. This dependence has been shown to lead to the motion of liquid droplets on solid substrates with thermal gradients (Xu and Qian 2012 Phys. Rev. E 85 061603). In the present work, we carry out molecular dynamics (MD) simulations as numerical experiments to further confirm the predictions made from our previous continuum hydrodynamic modeling and simulations, which are actually semi-quantitatively accurate down to the small length scales in the problem. Using MD simulations, we investigate the motion of evaporative droplets in one-component Lennard-Jones fluids confined in nanochannels with thermal gradients. The droplet is found to migrate in the direction of decreasing temperature of solid walls, with a migration velocity linearly proportional to the temperature gradient. This agrees with the prediction of our continuum model. We then measure the effect of droplet size on the droplet motion. It is found that the droplet mobility is inversely proportional to a dimensionless coefficient associated with the total rate of dissipation due to droplet movement. Our results show that this coefficient is of order unity and increases with the droplet size for the small droplets (~10 nm) simulated in the present work. These findings are in semi-quantitative agreement with the predictions of our continuum model. Finally, we measure the effect of liquid-vapor coexistence temperature on the droplet motion. Through a theoretical analysis on the size of the thermal singularity, it can be shown that the droplet mobility decreases with decreasing coexistence temperature. This is observed in our MD simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/25/19/195103DOI Listing

Publication Analysis

Top Keywords

thermal gradients
12
thermal singularity
12
coexistence temperature
12
molecular dynamics
8
dynamics simulations
8
motion evaporative
8
evaporative droplets
8
liquid-vapor interface
8
solid surface
8
liquid-vapor coexistence
8

Similar Publications

The steep temperature gradient near the bottom of the mantle is known to generate a negative correlation between the shear wave velocity ( ) and the depth in most regions of the D″ layer, as detected by seismological observations. However, increasing with depth is observed at the D″ layer beneath Central America, where the Farallon slab sinks, and the origin of this anomaly has not been well constrained. Here, we calculate the thermoelastic constants and obtain the elastic wave velocities of hydrous phase H with various Al contents and cation configurations, which may act as a water carrier to the D″ layer.

View Article and Find Full Text PDF

The Laser Interferometer Space Antenna (LISA) mission is designed to detect space gravitational wave sources in the millihertz band. A critical factor in the success of this mission is the residual acceleration noise metric of the internal test mass (TM) within the ultra-precise inertial sensors. Existing studies indicate that the coupling effects of residual gas and temperature gradient fluctuations significantly influence this metric, primarily manifesting as the radiometer effect and the outgassing effect.

View Article and Find Full Text PDF

The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.

View Article and Find Full Text PDF

The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.

View Article and Find Full Text PDF

The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!