Metastatic malignant melanoma remains one of the most therapeutically challenging forms of cancer. Here we test replication-competent vesicular stomatitis viruses (VSV) on 19 primary human melanoma samples and compare these infections with those of normal human melanocyte control cells. Even at a low viral concentration, we found a strong susceptibility to viral oncolysis in over 70% of melanomas. In contrast, melanocytes displayed strong resistance to virus infection and showed complete protection by interferon. Several recombinant VSVs were compared, and all infected and killed most melanomas with differences in the time course with increasing rates of melanoma infection, as follows: VSV-CT9-M51 < VSV-M51 < VSV-G/GFP < VSV-rp30. VSV-rp30 sequencing revealed 2 nonsynonymous mutations at codon positions P126 and L223, both of which appear to be required for the enhanced phenotype. VSV-rp30 showed effective targeting and infection of multiple subcutaneous and intracranial melanoma xenografts in SCID mice after tail vein virus application. Sequence analysis of mutations in the melanomas used revealed that BRAF but not NRAS gene mutation status was predictive for enhanced susceptibility to infection. In mouse melanoma models with specific induced gene mutations including mutations of the Braf, Pten, and Cdkn2a genes, viral infection correlated with the extent of malignant transformation. Similar to human melanocytes, mouse melanocytes resisted VSV-rp30 infection. This study confirms the general susceptibility of the majority of human melanoma types for VSV-mediated oncolysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3676084 | PMC |
http://dx.doi.org/10.1128/JVI.03311-12 | DOI Listing |
Cell Rep
January 2025
Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. Electronic address:
Virus neutralization profiles against primary infection sera and corresponding antigenic cartography are integral part of the COVID-19 and influenza vaccine strain selection processes. Human single variant exposure sera have previously defined the antigenic relationships among SARS-CoV-2 variants but are now largely unavailable due to widespread population immunity. Therefore, antigenic characterization of future SARS-CoV-2 variants will require an animal model, analogous to using ferrets for influenza virus.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
Marburg virus disease (MVD) is a severe infectious disease characterized by fever and profound hemorrhage caused by the Marburg virus (MARV), with a mortality rate reaching 90%, posing a significant threat to humans. MARV lies in its classification as a biosafety level four (BSL-4) pathogen, which demands stringent experimental conditions and substantial funding. Therefore, accessible and practical animal models are urgently needed to advance prophylactic and therapeutic strategies for MARV.
View Article and Find Full Text PDFAppl Biosaf
December 2024
National Microbiology, Public Health Agency of Canada, Winnipeg, Canada.
Introduction: Positive pressure breathing-air-fed protective suits are used in biosafety level 4 (BSL-4) containment laboratories as personal protective equipment to protect workers from high-consequence pathogens. However, even with the use of primary containment devices, the exterior surfaces of these suits could potentially become contaminated with those pathogens and result in their inadvertent removal from containment. To address the risk of such pathogens escaping from containment via contaminated protective suits, these suits are decontaminated in a disinfectant chemical shower situated in an anteroom prior to exiting the BSL-4 laboratory.
View Article and Find Full Text PDFJ Infect Dis
December 2024
Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Background: The robustness and persistence of vaccine antigen-induced antibodies are often used as proxy indicators of vaccine efficacy, but immune responses to vaccine vectors are typically less well-defined. Our study considered the kinetics of immunoglobulin (IgG) responses against the vector (vesicular stomatitis Indiana virus [VSIV]) nucleoprotein (N) and the inserted antigen (Ebola virus [EBOV]) glycoprotein (GP1,2) components of the rVSVΔG-ZEBOV-GP (rVSV-ZEBOV) vaccine and evaluated their use as biomarkers to confirm self-reported vaccination status.
Methods: From the Partnership for Research on Ebola Virus in Liberia (PREVAIL) I clinical trial (NCT02344407), we randomly selected 212 participants who received rVSV-ZEBOV (n=107) or placebo (n=105).
Curr Protoc
December 2024
Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria.
Antiviral drugs are essential medications to save the lives of infected people. However, they are under constant threat to become ineffective as viruses evolve quickly. Studying the development of resistance is therefore paramount to understand the impact of mutations on pharmacological treatment and to make informed decisions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!