A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Striatal neurones have a specific ability to respond to phasic dopamine release. | LitMetric

AI Article Synopsis

  • The study investigates the cAMP/PKA signaling pathway in two types of brain neurons: prefrontal cortical neurons and striatal neurons, highlighting significant differences in their responses to dopamine.
  • Striatal neurons show a stronger, faster, and longer-lasting cAMP/PKA response compared to cortical neurons, attributed to distinct molecular factors such as phosphodiesterase activity, adenylyl cyclase activity, and the presence of DARPP-32.
  • These differences suggest that striatal neurons are more adept at responding to brief dopamine signals, which is important for incentive learning processes.

Article Abstract

  The cAMP/protein kinase A (PKA) signalling cascade is ubiquitous, and each step in this cascade involves enzymes that are expressed in multiple isoforms. We investigated the effects of this diversity on the integration of the pathway in the target cell by comparing prefrontal cortical neurones with striatal neurones which express a very specific set of signalling proteins. The prefrontal cortex and striatum both receive dopaminergic inputs and we analysed the dynamics of the cAMP/PKA signal triggered by dopamine D1 receptors in these two brain structures. Biosensor imaging in mouse brain slice preparations showed profound differences in the D1 response between pyramidal cortical neurones and striatal medium spiny neurones: the cAMP/PKA response was much stronger, faster and longer lasting in striatal neurones than in pyramidal cortical neurones. We identified three molecular determinants underlying these differences: different activities of phosphodiesterases, particularly those of type 4, which strongly damp the cAMP signal in the cortex but not in the striatum; stronger adenylyl cyclase activity in the striatum, generating responses with a faster onset than in the cortex; and DARPP-32, a phosphatase inhibitor which prolongs PKA action in the striatum. Striatal neurones were also highly responsive in terms of gene expression since a single sub-second dopamine stimulation is sufficient to trigger c-Fos expression in the striatum, but not in the cortex. Our data show how specific molecular elements of the cAMP/PKA signalling cascade selectively enable the principal striatal neurones to respond to brief dopamine stimuli, a critical process in incentive learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717223PMC
http://dx.doi.org/10.1113/jphysiol.2013.252197DOI Listing

Publication Analysis

Top Keywords

striatal neurones
20
cortical neurones
12
signalling cascade
8
neurones
8
neurones striatal
8
cortex striatum
8
pyramidal cortical
8
striatal
6
striatum
5
neurones specific
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!